arrow
Volume 9, Issue 5
A Discrete Flux Scheme for Aerodynamic and Hydrodynamic Flows

S. C. Fu, R. M. C. So & W. W. F. Leung

Commun. Comput. Phys., 9 (2011), pp. 1257-1283.

Published online: 2011-05

Export citation
  • Abstract

The objective of this paper is to seek an alternative to the numerical simulation of the Navier-Stokes equations by a method similar to solving the BGK-type modeled lattice Boltzmann equation. The proposed method is valid for both gas and liquid flows. A discrete flux scheme (DFS) is used to derive the governing equations for two distribution functions; one for mass and another for thermal energy. These equations are derived by considering an infinitesimally small control volume with a velocity lattice representation for the distribution functions. The zero-order moment equation of the mass distribution function is used to recover the continuity equation, while the first-order moment equation recovers the linear momentum equation. The recovered equations are correct to the first order of the Knudsen number (Kn); thus, satisfying the continuum assumption. Similarly, the zero-order moment equation of the thermal energy distribution function is used to recover the thermal energy equation. For aerodynamic flows, it is shown that the finite difference solution of the DFS is equivalent to solving the lattice Boltzmann equation (LBE) with a BGK-type model and a specified equation of state. Thus formulated, the DFS can be used to simulate a variety of aerodynamic and hydrodynamic flows. Examples of classical aeroacoustics, compressible flow with shocks, incompressible isothermal and non-isothermal Couette flows, stratified flow in a cavity, and double diffusive flow inside a rectangle are used to demonstrate the validity and extent of the DFS. Very good to excellent agreement with known analytical and/or numerical solutions is obtained; thus lending evidence to the DFS approach as an alternative to solving the Navier-Stokes equations for fluid flow simulations.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CiCP-9-1257, author = {S. C. Fu, R. M. C. So and W. W. F. Leung}, title = {A Discrete Flux Scheme for Aerodynamic and Hydrodynamic Flows}, journal = {Communications in Computational Physics}, year = {2011}, volume = {9}, number = {5}, pages = {1257--1283}, abstract = {

The objective of this paper is to seek an alternative to the numerical simulation of the Navier-Stokes equations by a method similar to solving the BGK-type modeled lattice Boltzmann equation. The proposed method is valid for both gas and liquid flows. A discrete flux scheme (DFS) is used to derive the governing equations for two distribution functions; one for mass and another for thermal energy. These equations are derived by considering an infinitesimally small control volume with a velocity lattice representation for the distribution functions. The zero-order moment equation of the mass distribution function is used to recover the continuity equation, while the first-order moment equation recovers the linear momentum equation. The recovered equations are correct to the first order of the Knudsen number (Kn); thus, satisfying the continuum assumption. Similarly, the zero-order moment equation of the thermal energy distribution function is used to recover the thermal energy equation. For aerodynamic flows, it is shown that the finite difference solution of the DFS is equivalent to solving the lattice Boltzmann equation (LBE) with a BGK-type model and a specified equation of state. Thus formulated, the DFS can be used to simulate a variety of aerodynamic and hydrodynamic flows. Examples of classical aeroacoustics, compressible flow with shocks, incompressible isothermal and non-isothermal Couette flows, stratified flow in a cavity, and double diffusive flow inside a rectangle are used to demonstrate the validity and extent of the DFS. Very good to excellent agreement with known analytical and/or numerical solutions is obtained; thus lending evidence to the DFS approach as an alternative to solving the Navier-Stokes equations for fluid flow simulations.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.311009.241110s}, url = {http://global-sci.org/intro/article_detail/cicp/7550.html} }
TY - JOUR T1 - A Discrete Flux Scheme for Aerodynamic and Hydrodynamic Flows AU - S. C. Fu, R. M. C. So & W. W. F. Leung JO - Communications in Computational Physics VL - 5 SP - 1257 EP - 1283 PY - 2011 DA - 2011/05 SN - 9 DO - http://doi.org/10.4208/cicp.311009.241110s UR - https://global-sci.org/intro/article_detail/cicp/7550.html KW - AB -

The objective of this paper is to seek an alternative to the numerical simulation of the Navier-Stokes equations by a method similar to solving the BGK-type modeled lattice Boltzmann equation. The proposed method is valid for both gas and liquid flows. A discrete flux scheme (DFS) is used to derive the governing equations for two distribution functions; one for mass and another for thermal energy. These equations are derived by considering an infinitesimally small control volume with a velocity lattice representation for the distribution functions. The zero-order moment equation of the mass distribution function is used to recover the continuity equation, while the first-order moment equation recovers the linear momentum equation. The recovered equations are correct to the first order of the Knudsen number (Kn); thus, satisfying the continuum assumption. Similarly, the zero-order moment equation of the thermal energy distribution function is used to recover the thermal energy equation. For aerodynamic flows, it is shown that the finite difference solution of the DFS is equivalent to solving the lattice Boltzmann equation (LBE) with a BGK-type model and a specified equation of state. Thus formulated, the DFS can be used to simulate a variety of aerodynamic and hydrodynamic flows. Examples of classical aeroacoustics, compressible flow with shocks, incompressible isothermal and non-isothermal Couette flows, stratified flow in a cavity, and double diffusive flow inside a rectangle are used to demonstrate the validity and extent of the DFS. Very good to excellent agreement with known analytical and/or numerical solutions is obtained; thus lending evidence to the DFS approach as an alternative to solving the Navier-Stokes equations for fluid flow simulations.

S. C. Fu, R. M. C. So and W. W. F. Leung. (2011). A Discrete Flux Scheme for Aerodynamic and Hydrodynamic Flows. Communications in Computational Physics. 9 (5). 1257-1283. doi:10.4208/cicp.311009.241110s
Copy to clipboard
The citation has been copied to your clipboard