- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 9 (2011), pp. 1165-1178.
Published online: 2011-05
Cited by
- BibTex
- RIS
- TXT
Droplets on hydrophobic surfaces are ubiquitous in microfluidic applications and there exists a number of commonly used multicomponent and multiphase lattice Boltzmann schemes to study such systems. In this paper we focus on a popular implementation of a multicomponent model as introduced by Shan and Chen. Here, interactions between different components are implemented as repulsive forces whose strength is determined by model parameters. In this paper we present simulations of a droplet on a hydrophobic surface. We investigate the dependence of the contact angle on the simulation parameters and quantitatively compare different approaches to determine it. Results show that the method is capable of modelling the whole range of contact angles. We find that the a priori determination of the contact angle is depending on the simulation parameters with an uncertainty of 10% to 20%.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.201009.271010s}, url = {http://global-sci.org/intro/article_detail/cicp/7544.html} }Droplets on hydrophobic surfaces are ubiquitous in microfluidic applications and there exists a number of commonly used multicomponent and multiphase lattice Boltzmann schemes to study such systems. In this paper we focus on a popular implementation of a multicomponent model as introduced by Shan and Chen. Here, interactions between different components are implemented as repulsive forces whose strength is determined by model parameters. In this paper we present simulations of a droplet on a hydrophobic surface. We investigate the dependence of the contact angle on the simulation parameters and quantitatively compare different approaches to determine it. Results show that the method is capable of modelling the whole range of contact angles. We find that the a priori determination of the contact angle is depending on the simulation parameters with an uncertainty of 10% to 20%.