- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 9 (2011), pp. 269-296.
Published online: 2011-09
Cited by
- BibTex
- RIS
- TXT
The simulation of multiphase flows is an outstanding challenge, due to the inherent complexity of the underlying physical phenomena and to the fact that multiphase flows are very diverse in nature, and so are the laws governing their dynamics. In the last two decades, a new class of mesoscopic methods, based on minimal lattice formulation of Boltzmann kinetic equation, has gained significant interest as an efficient alternative to continuum methods based on the discretization of the NS equations for non ideal fluids. In this paper, three different multiphase models based on the lattice Boltzmann method (LBM) are discussed, in order to assess the capability of the method to deal with multiphase flows on a wide spectrum of operating conditions and multiphase phenomena. In particular, the range of application of each method is highlighted and its effectiveness is qualitatively assessed through comparison with numerical and experimental literature data.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.221209.250510a}, url = {http://global-sci.org/intro/article_detail/cicp/7500.html} }The simulation of multiphase flows is an outstanding challenge, due to the inherent complexity of the underlying physical phenomena and to the fact that multiphase flows are very diverse in nature, and so are the laws governing their dynamics. In the last two decades, a new class of mesoscopic methods, based on minimal lattice formulation of Boltzmann kinetic equation, has gained significant interest as an efficient alternative to continuum methods based on the discretization of the NS equations for non ideal fluids. In this paper, three different multiphase models based on the lattice Boltzmann method (LBM) are discussed, in order to assess the capability of the method to deal with multiphase flows on a wide spectrum of operating conditions and multiphase phenomena. In particular, the range of application of each method is highlighted and its effectiveness is qualitatively assessed through comparison with numerical and experimental literature data.