- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 844-866.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
For a new nonlinear iterative method named as Picard-Newton (P-N) iterative method for the solution of the time-dependent reaction-diffusion systems, which arise in non-equilibrium radiation diffusion applications, two time step control methods are investigated and a study of temporal accuracy of a first order time integration is presented. The non-equilibrium radiation diffusion problems with flux limiter are considered, which appends pesky complexity and nonlinearity to the diffusion coefficient. Numerical results are presented to demonstrate that compared with Picard method, for a desired accuracy, significant increase in solution efficiency can be obtained by Picard-Newton method with the suitable time step size selection.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.310110.161010a}, url = {http://global-sci.org/intro/article_detail/cicp/7464.html} }For a new nonlinear iterative method named as Picard-Newton (P-N) iterative method for the solution of the time-dependent reaction-diffusion systems, which arise in non-equilibrium radiation diffusion applications, two time step control methods are investigated and a study of temporal accuracy of a first order time integration is presented. The non-equilibrium radiation diffusion problems with flux limiter are considered, which appends pesky complexity and nonlinearity to the diffusion coefficient. Numerical results are presented to demonstrate that compared with Picard method, for a desired accuracy, significant increase in solution efficiency can be obtained by Picard-Newton method with the suitable time step size selection.