- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 785-806.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
A conservative modification to the ghost fluid method (GFM) is developed for compressible multiphase flows. The motivation is to eliminate or reduce the conservation error of the GFM without affecting its performance. We track the conservative variables near the material interface and use this information to modify the numerical solution for an interfacing cell when the interface has passed the cell. The modification procedure can be used on the GFM with any base schemes. In this paper we use the fifth order finite difference WENO scheme for the spatial discretization and the third order TVD Runge-Kutta method for the time discretization. The level set method is used to capture the interface. Numerical experiments show that the method is at least mass and momentum conservative and is in general comparable in numerical resolution with the original GFM.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.201209.161010a}, url = {http://global-sci.org/intro/article_detail/cicp/7461.html} }A conservative modification to the ghost fluid method (GFM) is developed for compressible multiphase flows. The motivation is to eliminate or reduce the conservation error of the GFM without affecting its performance. We track the conservative variables near the material interface and use this information to modify the numerical solution for an interfacing cell when the interface has passed the cell. The modification procedure can be used on the GFM with any base schemes. In this paper we use the fifth order finite difference WENO scheme for the spatial discretization and the third order TVD Runge-Kutta method for the time discretization. The level set method is used to capture the interface. Numerical experiments show that the method is at least mass and momentum conservative and is in general comparable in numerical resolution with the original GFM.