- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 742-766.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
The paper is concerned with the numerical solution of Schrödinger equations on an unbounded spatial domain. High-order absorbing boundary conditions for one-dimensional domain are derived, and the stability of the reduced initial boundary value problem in the computational interval is proved by energy estimate. Then a second order finite difference scheme is proposed, and the convergence of the scheme is established as well. Finally, numerical examples are reported to confirm our error estimates of the numerical methods.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.280610.161110a}, url = {http://global-sci.org/intro/article_detail/cicp/7459.html} }The paper is concerned with the numerical solution of Schrödinger equations on an unbounded spatial domain. High-order absorbing boundary conditions for one-dimensional domain are derived, and the stability of the reduced initial boundary value problem in the computational interval is proved by energy estimate. Then a second order finite difference scheme is proposed, and the convergence of the scheme is established as well. Finally, numerical examples are reported to confirm our error estimates of the numerical methods.