- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 371-404.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
We present a new Finite Volume Evolution Galerkin (FVEG) scheme for the solution of the shallow water equations (SWE) with the bottom topography as a source term. Our new scheme will be based on the FVEG methods presented in (Noelle and Kraft, J. Comp. Phys., 221 (2007)), but adds the possibility to handle dry boundaries. The most important aspect is to preserve the positivity of the water height. We present a general approach to ensure this for arbitrary finite volume schemes. The main idea is to limit the outgoing fluxes of a cell whenever they would create negative water height. Physically, this corresponds to the absence of fluxes in the presence of vacuum. Well-balancing is then re-established by splitting gravitational and gravity driven parts of the flux. Moreover, a new entropy fix is introduced that improves the reproduction of sonic rarefaction waves.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.220210.020710a}, url = {http://global-sci.org/intro/article_detail/cicp/7446.html} }We present a new Finite Volume Evolution Galerkin (FVEG) scheme for the solution of the shallow water equations (SWE) with the bottom topography as a source term. Our new scheme will be based on the FVEG methods presented in (Noelle and Kraft, J. Comp. Phys., 221 (2007)), but adds the possibility to handle dry boundaries. The most important aspect is to preserve the positivity of the water height. We present a general approach to ensure this for arbitrary finite volume schemes. The main idea is to limit the outgoing fluxes of a cell whenever they would create negative water height. Physically, this corresponds to the absence of fluxes in the presence of vacuum. Well-balancing is then re-established by splitting gravitational and gravity driven parts of the flux. Moreover, a new entropy fix is introduced that improves the reproduction of sonic rarefaction waves.