- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 253-278.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
The important task of evaluating the impact of random parameters on the output of stochastic ordinary differential equations (SODE) can be computationally very demanding, in particular for problems with a high-dimensional parameter space. In this work we consider this problem in some detail and demonstrate that by combining several techniques one can dramatically reduce the overall cost without impacting the predictive accuracy of the output of interests. We discuss how the combination of ANOVA expansions, different sparse grid techniques, and the total sensitivity index (TSI) as a pre-selective mechanism enables the modeling of problems with hundreds of parameters. We demonstrate the accuracy and efficiency of this approach on a number of challenging test cases drawn from engineering and science.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.090110.080910a}, url = {http://global-sci.org/intro/article_detail/cicp/7442.html} }The important task of evaluating the impact of random parameters on the output of stochastic ordinary differential equations (SODE) can be computationally very demanding, in particular for problems with a high-dimensional parameter space. In this work we consider this problem in some detail and demonstrate that by combining several techniques one can dramatically reduce the overall cost without impacting the predictive accuracy of the output of interests. We discuss how the combination of ANOVA expansions, different sparse grid techniques, and the total sensitivity index (TSI) as a pre-selective mechanism enables the modeling of problems with hundreds of parameters. We demonstrate the accuracy and efficiency of this approach on a number of challenging test cases drawn from engineering and science.