- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 90-119.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
In low speed flow computations, compressible finite-volume solvers are known to a) fail to converge in acceptable time and b) reach unphysical solutions. These problems are known to be cured by A) preconditioning on the time-derivative term, and B) control of numerical dissipation, respectively. There have been several methods of A) and B) proposed separately. However, it is unclear which combination is the most accurate, robust, and efficient for low speed flows. We carried out a comparative study of several well-known or recently-developed low-dissipation Euler fluxes coupled with a preconditioned LU-SGS (Lower-Upper Symmetric Gauss-Seidel) implicit time integration scheme to compute steady flows. Through a series of numerical experiments, accurate, efficient, and robust methods are suggested for low speed flow computations.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.041109.160910a}, url = {http://global-sci.org/intro/article_detail/cicp/7436.html} }In low speed flow computations, compressible finite-volume solvers are known to a) fail to converge in acceptable time and b) reach unphysical solutions. These problems are known to be cured by A) preconditioning on the time-derivative term, and B) control of numerical dissipation, respectively. There have been several methods of A) and B) proposed separately. However, it is unclear which combination is the most accurate, robust, and efficient for low speed flows. We carried out a comparative study of several well-known or recently-developed low-dissipation Euler fluxes coupled with a preconditioned LU-SGS (Lower-Upper Symmetric Gauss-Seidel) implicit time integration scheme to compute steady flows. Through a series of numerical experiments, accurate, efficient, and robust methods are suggested for low speed flow computations.