- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 1618-1642.
Published online: 2012-11
Cited by
- BibTex
- RIS
- TXT
We simulate the particle transport in a thin film deposition process made by PVD (physical vapor deposition) and present several models for projectile and target collisions in order to compute the mean free path and the differential cross section (angular distribution of scattered projectiles) of the scattering process. A detailed description of collision models is of the highest importance in Monte Carlo simulations of high power impulse magnetron sputtering and DC sputtering. We derive an equation for the mean free path for arbitrary interactions (cross sections) that includes the relative velocity between the particles. We apply our results to two major interaction models: hard sphere interaction & screened Coulomb interaction. Both types of interaction separate DC sputtering from HIPIMS.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.210211.270511a}, url = {http://global-sci.org/intro/article_detail/cicp/7427.html} }We simulate the particle transport in a thin film deposition process made by PVD (physical vapor deposition) and present several models for projectile and target collisions in order to compute the mean free path and the differential cross section (angular distribution of scattered projectiles) of the scattering process. A detailed description of collision models is of the highest importance in Monte Carlo simulations of high power impulse magnetron sputtering and DC sputtering. We derive an equation for the mean free path for arbitrary interactions (cross sections) that includes the relative velocity between the particles. We apply our results to two major interaction models: hard sphere interaction & screened Coulomb interaction. Both types of interaction separate DC sputtering from HIPIMS.