- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 1323-1333.
Published online: 2012-04
Cited by
- BibTex
- RIS
- TXT
The swimming of a 3D fish-like body with finlets is numerically investigated at Re = 1000 (the Reynolds number is based on the uniform upstream flow and the length of the fish-like body). The finlets are simply modeled as thin rigid rectangular plates that undulate with the body. The wake structures and the flow around the caudal peduncle are studied. The finlets redirect the local flow across the caudal peduncle but the vortical structures in the wake are almost not affected by the finlets. Improvement of hydrodynamic performance has not been found in the simulation based on this simple model. The present numerical result is in agreement with that of the work of Nauen and Lauder [J. Exp. Biol., 204 (2001), pp. 2251-2263] and partially supports the hypothesis of Webb [Bull. Fish. Res. Bd. Can., 190 (1975), pp. 1-159].
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.090510.150511s}, url = {http://global-sci.org/intro/article_detail/cicp/7414.html} }The swimming of a 3D fish-like body with finlets is numerically investigated at Re = 1000 (the Reynolds number is based on the uniform upstream flow and the length of the fish-like body). The finlets are simply modeled as thin rigid rectangular plates that undulate with the body. The wake structures and the flow around the caudal peduncle are studied. The finlets redirect the local flow across the caudal peduncle but the vortical structures in the wake are almost not affected by the finlets. Improvement of hydrodynamic performance has not been found in the simulation based on this simple model. The present numerical result is in agreement with that of the work of Nauen and Lauder [J. Exp. Biol., 204 (2001), pp. 2251-2263] and partially supports the hypothesis of Webb [Bull. Fish. Res. Bd. Can., 190 (1975), pp. 1-159].