- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 472-488.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
Flexible discretization techniques for the approximative solution of coupled wave propagation problems are investigated. In particular, the advantages of using non-matching grids are presented, when one subregion has to be resolved by a substantially finer grid than the other subregion. We present the non-matching grid technique for the case of a mechanical-acoustic coupled as well as for acoustic-acoustic coupled systems. For the first case, the problem formulation remains essentially the same as for the matching situation, while for the acoustic-acoustic coupling, the formulation is enhanced with Lagrange multipliers within the framework of Mortar Finite Element Methods. The applications will clearly demonstrate the superiority of the Mortar Finite Element Method over the standard Finite Element Method both concerning the flexibility for the mesh generation as well as the computational time.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.141209.280810s}, url = {http://global-sci.org/intro/article_detail/cicp/7373.html} }Flexible discretization techniques for the approximative solution of coupled wave propagation problems are investigated. In particular, the advantages of using non-matching grids are presented, when one subregion has to be resolved by a substantially finer grid than the other subregion. We present the non-matching grid technique for the case of a mechanical-acoustic coupled as well as for acoustic-acoustic coupled systems. For the first case, the problem formulation remains essentially the same as for the matching situation, while for the acoustic-acoustic coupling, the formulation is enhanced with Lagrange multipliers within the framework of Mortar Finite Element Methods. The applications will clearly demonstrate the superiority of the Mortar Finite Element Method over the standard Finite Element Method both concerning the flexibility for the mesh generation as well as the computational time.