Volume 11, Issue 2
A Preconditioned Iterative Solver for the Scattering Solutions of the Schrödinger Equation

Hisham bin Zubair ,  Bram Reps and Wim Vanroose

10.4208/cicp.121209.180910s

Commun. Comput. Phys., 11 (2012), pp. 415-434.

Preview Full PDF BiBTex 97 411
  • Abstract

The Schro¨dinger equation defines the dynamics of quantum particles which has been an areaof unabated interest in physics. We demonstrate how simple transformations of the Schro¨dinger equation leads to a coupled linear system, whereby each diagonal block is a high frequency Helmholtz problem. Based on this model, we derive indefinite Helmholtz model problems with strongly varying wavenumbers. We employ the iterative approach for their solution. In particular, we develop a preconditioner that has its spectrum restricted to a quadrant (of the complex plane) thereby making it easily invertible by multigrid methods with standard components. This multigrid preconditioner is used in conjunction with suitable Krylov-subspace methods for solving the indefinite Helmholtz model problems. The aim of this study is to report the feasibility of this preconditioner for the model problems. We compare this idea with the other prevalent preconditioning ideas, and discuss its merits. Results of numerical experiments are presented, which complement the proposed ideas, and show that this preconditioner may be used in an automatic setting.


  • History

Published online: 2012-12

  • Keywords

  • AMS Subject Headings

  • Cited by