- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 271-284.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
We study the inverse problem of recovering the scatterer shape from the far-field pattern(FFP) in the presence of noise. Furthermore, only a discrete partial aperture is usually known. This problem is ill-posed and is frequently addressed using regularization. Instead, we propose to use a direct approach denoising the FFP using a filtering technique. The effectiveness of the technique is studied on a scatterer with the shape of the ellipse with a tower. The forward scattering problem is solved using the finite element method (FEM). The numerical FFP is additionally corrupted by Gaussian noise. The shape parameters are found based on a least-square error estimator. If ũ∞ is a perturbation of the FFP then we attempt to find Γ, the scatterer shape, which minimizes ‖ u∞−ũ∞ ‖ using the conjugate gradient method for the denoised FFP.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.181109.011210s}, url = {http://global-sci.org/intro/article_detail/cicp/7361.html} }We study the inverse problem of recovering the scatterer shape from the far-field pattern(FFP) in the presence of noise. Furthermore, only a discrete partial aperture is usually known. This problem is ill-posed and is frequently addressed using regularization. Instead, we propose to use a direct approach denoising the FFP using a filtering technique. The effectiveness of the technique is studied on a scatterer with the shape of the ellipse with a tower. The forward scattering problem is solved using the finite element method (FEM). The numerical FFP is additionally corrupted by Gaussian noise. The shape parameters are found based on a least-square error estimator. If ũ∞ is a perturbation of the FFP then we attempt to find Γ, the scatterer shape, which minimizes ‖ u∞−ũ∞ ‖ using the conjugate gradient method for the denoised FFP.