- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 12 (2012), pp. 1163-1182.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
In this paper, a newly developed second order temporally and spatially accurate finite difference scheme for biharmonic semi linear equations has been employed in simulating the time evolution of viscous flows past an impulsively started circular cylinder for Reynolds number (Re) up to 9,500. The robustness of the scheme and the effectiveness of the formulation can be gauged by the fact that it very accurately captures complex flow structures such as the von Kármán vortex street through streakline simulation and the α and β-phenomena in the range 3,000≤Re≤9,500 among others. The main focus here is the application of the technique which enables the use of the discretized version of a single semi linear biharmonic equation in order to efficiently simulate different fluid structures associated with flows around a bluff body. We compare our results, both qualitatively and quantitatively, with established numerical and more so with experimental results. Excellent comparison is obtained in all the cases.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.200411.121211a}, url = {http://global-sci.org/intro/article_detail/cicp/7330.html} }In this paper, a newly developed second order temporally and spatially accurate finite difference scheme for biharmonic semi linear equations has been employed in simulating the time evolution of viscous flows past an impulsively started circular cylinder for Reynolds number (Re) up to 9,500. The robustness of the scheme and the effectiveness of the formulation can be gauged by the fact that it very accurately captures complex flow structures such as the von Kármán vortex street through streakline simulation and the α and β-phenomena in the range 3,000≤Re≤9,500 among others. The main focus here is the application of the technique which enables the use of the discretized version of a single semi linear biharmonic equation in order to efficiently simulate different fluid structures associated with flows around a bluff body. We compare our results, both qualitatively and quantitatively, with established numerical and more so with experimental results. Excellent comparison is obtained in all the cases.