- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 12 (2012), pp. 284-314.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
A concept of "static reconstruction" and "dynamic reconstruction" was introduced for higher-order (third-order or more) numerical methods in our previous work. Based on this concept, a class of hybrid DG/FV methods had been developed for one-dimensional conservation law using a "hybrid reconstruction" approach, and extended to two-dimensional scalar equations on triangular and Cartesian/triangular hybrid grids. In the hybrid DG/FV schemes, the lower-order derivatives of the piecewise polynomial are computed locally in a cell by the traditional DG method (called as "dynamic reconstruction"), while the higher-order derivatives are reconstructed by the "static reconstruction" of the FV method, using the known lower-order derivatives in the cell itself and in its adjacent neighboring cells. In this paper, the hybrid DG/FV schemes are extended to two-dimensional Euler equations on triangular and Cartesian/triangular hybrid grids. Some typical test cases are presented to demonstrate the performance of the hybrid DG/FV methods, including the standard vortex evolution problem with exact solution, isentropic vortex/weak shock wave interaction, subsonic flows past a circular cylinder and a three-element airfoil (30P30N), transonic flow past a NACA0012 airfoil. The accuracy study shows that the hybrid DG/FV method achieves the desired third-order accuracy, and the applications demonstrate that they can capture the flow structure accurately, and can reduce the CPU time and memory requirement greatly than the traditional DG method with the same order of accuracy.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.210111.140711a}, url = {http://global-sci.org/intro/article_detail/cicp/7293.html} }A concept of "static reconstruction" and "dynamic reconstruction" was introduced for higher-order (third-order or more) numerical methods in our previous work. Based on this concept, a class of hybrid DG/FV methods had been developed for one-dimensional conservation law using a "hybrid reconstruction" approach, and extended to two-dimensional scalar equations on triangular and Cartesian/triangular hybrid grids. In the hybrid DG/FV schemes, the lower-order derivatives of the piecewise polynomial are computed locally in a cell by the traditional DG method (called as "dynamic reconstruction"), while the higher-order derivatives are reconstructed by the "static reconstruction" of the FV method, using the known lower-order derivatives in the cell itself and in its adjacent neighboring cells. In this paper, the hybrid DG/FV schemes are extended to two-dimensional Euler equations on triangular and Cartesian/triangular hybrid grids. Some typical test cases are presented to demonstrate the performance of the hybrid DG/FV methods, including the standard vortex evolution problem with exact solution, isentropic vortex/weak shock wave interaction, subsonic flows past a circular cylinder and a three-element airfoil (30P30N), transonic flow past a NACA0012 airfoil. The accuracy study shows that the hybrid DG/FV method achieves the desired third-order accuracy, and the applications demonstrate that they can capture the flow structure accurately, and can reduce the CPU time and memory requirement greatly than the traditional DG method with the same order of accuracy.