- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 13 (2013), pp. 1292-1308.
Published online: 2013-05
Cited by
- BibTex
- RIS
- TXT
This paper proposes a variational binary level set method for shape and topology optimization of structural. First, a topology optimization problem is presented based on the level set method and an algorithm based on binary level set method is proposed to solve such problem. Considering the difficulties of coordination between the various parameters and efficient implementation of the proposed method, we present a fast algorithm by reducing several parameters to only one parameter, which would substantially reduce the complexity of computation and make it easily and quickly to get the optimal solution. The algorithm we constructed does not need to re-initialize and can produce many new holes automatically. Furthermore, the fast algorithm allows us to avoid the update of Lagrange multiplier and easily deal with constraints, such as piecewise constant, volume and length of the interfaces. Finally, we show several optimum design examples to confirm the validity and efficiency of our method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.160911.110512a}, url = {http://global-sci.org/intro/article_detail/cicp/7275.html} }This paper proposes a variational binary level set method for shape and topology optimization of structural. First, a topology optimization problem is presented based on the level set method and an algorithm based on binary level set method is proposed to solve such problem. Considering the difficulties of coordination between the various parameters and efficient implementation of the proposed method, we present a fast algorithm by reducing several parameters to only one parameter, which would substantially reduce the complexity of computation and make it easily and quickly to get the optimal solution. The algorithm we constructed does not need to re-initialize and can produce many new holes automatically. Furthermore, the fast algorithm allows us to avoid the update of Lagrange multiplier and easily deal with constraints, such as piecewise constant, volume and length of the interfaces. Finally, we show several optimum design examples to confirm the validity and efficiency of our method.