arrow
Volume 14, Issue 5
Kinetic Energy Preserving and Entropy Stable Finite Volume Schemes for Compressible Euler and Navier-Stokes Equations

Praveen Chandrashekar

Commun. Comput. Phys., 14 (2013), pp. 1252-1286.

Published online: 2013-11

Export citation
  • Abstract

Centered numerical fluxes can be constructed for compressible Euler equations which preserve kinetic energy in the semi-discrete finite volume scheme. The essential feature is that the momentum flux should be of the form image.png where image.png are any consistent approximations to the pressure and the mass flux. This scheme thus leaves most terms in the numerical flux unspecified and various authors have used simple averaging. Here we enforce approximate or exact entropy consistency which leads to a unique choice of all the terms in the numerical fluxes. As a consequence, a novel entropy conservative flux that also preserves kinetic energy for the semi-discrete finite volume scheme has been proposed. These fluxes are centered and some dissipation has to be added if shocks are present or if the mesh is coarse. We construct scalar artificial dissipation terms which are kinetic energy stable and satisfy approximate/exact entropy condition. Secondly, we use entropy-variable based matrix dissipation flux which leads to kinetic energy and entropy stable schemes. These schemes are shown to be free of entropy violating solutions unlike the original Roe scheme. For hypersonic flows a blended scheme is proposed which gives carbuncle free solutions for blunt body flows. Numerical results for Euler and Navier-Stokes equations are presented to demonstrate the performance of the different schemes.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CiCP-14-1252, author = {Praveen Chandrashekar}, title = {Kinetic Energy Preserving and Entropy Stable Finite Volume Schemes for Compressible Euler and Navier-Stokes Equations}, journal = {Communications in Computational Physics}, year = {2013}, volume = {14}, number = {5}, pages = {1252--1286}, abstract = {

Centered numerical fluxes can be constructed for compressible Euler equations which preserve kinetic energy in the semi-discrete finite volume scheme. The essential feature is that the momentum flux should be of the form image.png where image.png are any consistent approximations to the pressure and the mass flux. This scheme thus leaves most terms in the numerical flux unspecified and various authors have used simple averaging. Here we enforce approximate or exact entropy consistency which leads to a unique choice of all the terms in the numerical fluxes. As a consequence, a novel entropy conservative flux that also preserves kinetic energy for the semi-discrete finite volume scheme has been proposed. These fluxes are centered and some dissipation has to be added if shocks are present or if the mesh is coarse. We construct scalar artificial dissipation terms which are kinetic energy stable and satisfy approximate/exact entropy condition. Secondly, we use entropy-variable based matrix dissipation flux which leads to kinetic energy and entropy stable schemes. These schemes are shown to be free of entropy violating solutions unlike the original Roe scheme. For hypersonic flows a blended scheme is proposed which gives carbuncle free solutions for blunt body flows. Numerical results for Euler and Navier-Stokes equations are presented to demonstrate the performance of the different schemes.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.170712.010313a}, url = {http://global-sci.org/intro/article_detail/cicp/7201.html} }
TY - JOUR T1 - Kinetic Energy Preserving and Entropy Stable Finite Volume Schemes for Compressible Euler and Navier-Stokes Equations AU - Praveen Chandrashekar JO - Communications in Computational Physics VL - 5 SP - 1252 EP - 1286 PY - 2013 DA - 2013/11 SN - 14 DO - http://doi.org/10.4208/cicp.170712.010313a UR - https://global-sci.org/intro/article_detail/cicp/7201.html KW - AB -

Centered numerical fluxes can be constructed for compressible Euler equations which preserve kinetic energy in the semi-discrete finite volume scheme. The essential feature is that the momentum flux should be of the form image.png where image.png are any consistent approximations to the pressure and the mass flux. This scheme thus leaves most terms in the numerical flux unspecified and various authors have used simple averaging. Here we enforce approximate or exact entropy consistency which leads to a unique choice of all the terms in the numerical fluxes. As a consequence, a novel entropy conservative flux that also preserves kinetic energy for the semi-discrete finite volume scheme has been proposed. These fluxes are centered and some dissipation has to be added if shocks are present or if the mesh is coarse. We construct scalar artificial dissipation terms which are kinetic energy stable and satisfy approximate/exact entropy condition. Secondly, we use entropy-variable based matrix dissipation flux which leads to kinetic energy and entropy stable schemes. These schemes are shown to be free of entropy violating solutions unlike the original Roe scheme. For hypersonic flows a blended scheme is proposed which gives carbuncle free solutions for blunt body flows. Numerical results for Euler and Navier-Stokes equations are presented to demonstrate the performance of the different schemes.

Praveen Chandrashekar. (2013). Kinetic Energy Preserving and Entropy Stable Finite Volume Schemes for Compressible Euler and Navier-Stokes Equations. Communications in Computational Physics. 14 (5). 1252-1286. doi:10.4208/cicp.170712.010313a
Copy to clipboard
The citation has been copied to your clipboard