arrow
Volume 14, Issue 1
First-Principle Calculations of Half-Metallic Double Perovskite La2BB'O6 (B,B'= 3d transition metal)

Y. P. Liu, S. H. Chen, H. R. Fuh & Y. K. Wang

Commun. Comput. Phys., 14 (2013), pp. 174-185.

Published online: 2014-07

Export citation
  • Abstract

In this paper, we present calculations based on density functional theory using generalized gradient approximation (GGA) in double perovskite structure La2BB'O6 (B,B′=3d transition metal) out of 45 ($C_2^{10}$) combinational possibilities. Considering 4 types of magnetic states, namely, ferromagnetic (FM), ferrimagnetic (FiM), antiferromagnetics (AF), and nonmagnetic (NM) with full structure optimization, 13 possible surviving, stable FM/FiM-HM materials containing 6 FM-HM materials (La2ScNiO6, La2CrCoO6, La2CrNiO6, La2VScO6, La2VZnO6, and La2VNiO6) and 7 FiM-HM materials (La2VFeO6, La2ZnCoO6, La2TiCoO6, La2CrZnO6, La2CrMnO6, La2ScFeO6, and La2TiMnO6) are found. Considering the correlation effect (GGA+U), there are 6 possible half-metallic stable, surviving (HM) materials containing 3 FM-HM materials (La2ScNiO6, La2CrCoO6, and La2CrNiO6) and 3 FiM-HM materials (La2VFeO6, La2ZnCoO6, and La2TiCoO6).

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CiCP-14-174, author = {}, title = {First-Principle Calculations of Half-Metallic Double Perovskite La2BB'O6 (B,B'= 3d transition metal)}, journal = {Communications in Computational Physics}, year = {2014}, volume = {14}, number = {1}, pages = {174--185}, abstract = {

In this paper, we present calculations based on density functional theory using generalized gradient approximation (GGA) in double perovskite structure La2BB'O6 (B,B′=3d transition metal) out of 45 ($C_2^{10}$) combinational possibilities. Considering 4 types of magnetic states, namely, ferromagnetic (FM), ferrimagnetic (FiM), antiferromagnetics (AF), and nonmagnetic (NM) with full structure optimization, 13 possible surviving, stable FM/FiM-HM materials containing 6 FM-HM materials (La2ScNiO6, La2CrCoO6, La2CrNiO6, La2VScO6, La2VZnO6, and La2VNiO6) and 7 FiM-HM materials (La2VFeO6, La2ZnCoO6, La2TiCoO6, La2CrZnO6, La2CrMnO6, La2ScFeO6, and La2TiMnO6) are found. Considering the correlation effect (GGA+U), there are 6 possible half-metallic stable, surviving (HM) materials containing 3 FM-HM materials (La2ScNiO6, La2CrCoO6, and La2CrNiO6) and 3 FiM-HM materials (La2VFeO6, La2ZnCoO6, and La2TiCoO6).

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.190312.190712a}, url = {http://global-sci.org/intro/article_detail/cicp/7155.html} }
TY - JOUR T1 - First-Principle Calculations of Half-Metallic Double Perovskite La2BB'O6 (B,B'= 3d transition metal) JO - Communications in Computational Physics VL - 1 SP - 174 EP - 185 PY - 2014 DA - 2014/07 SN - 14 DO - http://doi.org/10.4208/cicp.190312.190712a UR - https://global-sci.org/intro/article_detail/cicp/7155.html KW - AB -

In this paper, we present calculations based on density functional theory using generalized gradient approximation (GGA) in double perovskite structure La2BB'O6 (B,B′=3d transition metal) out of 45 ($C_2^{10}$) combinational possibilities. Considering 4 types of magnetic states, namely, ferromagnetic (FM), ferrimagnetic (FiM), antiferromagnetics (AF), and nonmagnetic (NM) with full structure optimization, 13 possible surviving, stable FM/FiM-HM materials containing 6 FM-HM materials (La2ScNiO6, La2CrCoO6, La2CrNiO6, La2VScO6, La2VZnO6, and La2VNiO6) and 7 FiM-HM materials (La2VFeO6, La2ZnCoO6, La2TiCoO6, La2CrZnO6, La2CrMnO6, La2ScFeO6, and La2TiMnO6) are found. Considering the correlation effect (GGA+U), there are 6 possible half-metallic stable, surviving (HM) materials containing 3 FM-HM materials (La2ScNiO6, La2CrCoO6, and La2CrNiO6) and 3 FiM-HM materials (La2VFeO6, La2ZnCoO6, and La2TiCoO6).

Y. P. Liu, S. H. Chen, H. R. Fuh & Y. K. Wang. (2020). First-Principle Calculations of Half-Metallic Double Perovskite La2BB'O6 (B,B'= 3d transition metal). Communications in Computational Physics. 14 (1). 174-185. doi:10.4208/cicp.190312.190712a
Copy to clipboard
The citation has been copied to your clipboard