- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 14 (2013), pp. 77-106.
Published online: 2014-07
Cited by
- BibTex
- RIS
- TXT
In an interdisciplinary field on mathematics and physics, we examine a physical problem, fluid flow in porous media, which is represented by a stochastic partial differential equation (SPDE). We first give a priori error estimates for the solutions to an optimization problem constrained by the physical model under lower regularity assumptions than the literature. We then use the concept of Galerkin finite element methods to establish a new numerical algorithm to give approximations for our stochastic optimal physical problem. Finally, we develop original computer programs based on the algorithm and use several numerical examples of various situations to see how well our solver works by comparing its outputs to the priori error estimates.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.241011.150612a}, url = {http://global-sci.org/intro/article_detail/cicp/7151.html} }In an interdisciplinary field on mathematics and physics, we examine a physical problem, fluid flow in porous media, which is represented by a stochastic partial differential equation (SPDE). We first give a priori error estimates for the solutions to an optimization problem constrained by the physical model under lower regularity assumptions than the literature. We then use the concept of Galerkin finite element methods to establish a new numerical algorithm to give approximations for our stochastic optimal physical problem. Finally, we develop original computer programs based on the algorithm and use several numerical examples of various situations to see how well our solver works by comparing its outputs to the priori error estimates.