- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 14 (2013), pp. 21-47.
Published online: 2014-07
Cited by
- BibTex
- RIS
- TXT
A novel adaptive approach to compute the eigenenergies and eigenfunctions of the two-particle (electron-hole) Schrödinger equation including Coulomb attraction is presented. As an example, we analyze the energetically lowest exciton state of a thin one-dimensional semiconductor quantum wire in the presence of disorder which arises from the non-smooth interface between the wire and surrounding material. The eigenvalues of the corresponding Schrödinger equation, i.e., the one-dimensional exciton Wannier equation with disorder, correspond to the energies of excitons in the quantum wire. The wavefunctions, in turn, provide information on the optical properties of the wire.
We reformulate the problem of two interacting particles that both can move in one dimension as a stationary eigenvalue problem with two spacial dimensions in an appropriate weak form whose bilinear form is arranged to be symmetric, continuous, and coercive. The disorder of the wire is modelled by adding a potential in the Hamiltonian which is generated by normally distributed random numbers. The numerical solution of this problem is based on adaptive wavelets. Our scheme allows for a convergence proof of the resulting scheme together with complexity estimates. Numerical examples demonstrate the behavior of the smallest eigenvalue, the ground state energies of the exciton, together with the eigenstates depending on the strength and spatial correlation of disorder.
A novel adaptive approach to compute the eigenenergies and eigenfunctions of the two-particle (electron-hole) Schrödinger equation including Coulomb attraction is presented. As an example, we analyze the energetically lowest exciton state of a thin one-dimensional semiconductor quantum wire in the presence of disorder which arises from the non-smooth interface between the wire and surrounding material. The eigenvalues of the corresponding Schrödinger equation, i.e., the one-dimensional exciton Wannier equation with disorder, correspond to the energies of excitons in the quantum wire. The wavefunctions, in turn, provide information on the optical properties of the wire.
We reformulate the problem of two interacting particles that both can move in one dimension as a stationary eigenvalue problem with two spacial dimensions in an appropriate weak form whose bilinear form is arranged to be symmetric, continuous, and coercive. The disorder of the wire is modelled by adding a potential in the Hamiltonian which is generated by normally distributed random numbers. The numerical solution of this problem is based on adaptive wavelets. Our scheme allows for a convergence proof of the resulting scheme together with complexity estimates. Numerical examples demonstrate the behavior of the smallest eigenvalue, the ground state energies of the exciton, together with the eigenstates depending on the strength and spatial correlation of disorder.