- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 15 (2014), pp. 1407-1430.
Published online: 2014-05
Cited by
- BibTex
- RIS
- TXT
Correlation functions in the $\mathcal{O}$$(n)$ models below the critical temperature are considered. Based on Monte Carlo (MC) data, we confirm the fact stated earlier by Engels and Vogt, that the transverse two-plane correlation function of the $\mathcal{O}$$(4)$ model for lattice sizes about $L=120$ and small external fields $h$ is very well described by a Gaussian approximation. However, we show that fits of not lower quality are provided by certain non-Gaussian approximation. We have also tested larger lattice sizes, up to $L=512$. The Fourier-transformed transverse and longitudinal two-point correlation functions have Goldstone mode singularities in the thermodynamic limit at $k→0$ and $h=+0$, i.e., $G_⊥$(k)$≃ak^{−λ_⊥}$ and $G_{||}($k$)≃bk^{−λ_{||}}$, respectively. Here $a$ and $b$ are the amplitudes, $k$=|k| is the magnitude of the wave vector k. The exponents $λ_⊥$, $λ_{||}$ and the ratio $bM^2/a^2$, where $M$ is the spontaneous magnetization, are universal according to the GFD (grouping of Feynman diagrams) approach. Here we find that the universality follows also from the standard (Gaussian) theory, yielding $bM^2/a^2$=$(n−1)/16$. Our MC estimates of this ratio are $0.06±0.01$ for $n=2$, $0.17±0.01$ for $n=4$ and $0.498±0.010$ for $n=10$. According to these and our earlier MC results, the asymptotic behavior and Goldstone mode singularities are not exactly described by the standard theory. This is expected from the GFD theory. We have found appropriate analytic approximations for $G_⊥$(k) and $G_{||}$(k), well fitting the simulation data for small $k$. We have used them to test the Patashinski-Pokrovski relation and have found that it holds approximately.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.260613.301013a}, url = {http://global-sci.org/intro/article_detail/cicp/7143.html} }Correlation functions in the $\mathcal{O}$$(n)$ models below the critical temperature are considered. Based on Monte Carlo (MC) data, we confirm the fact stated earlier by Engels and Vogt, that the transverse two-plane correlation function of the $\mathcal{O}$$(4)$ model for lattice sizes about $L=120$ and small external fields $h$ is very well described by a Gaussian approximation. However, we show that fits of not lower quality are provided by certain non-Gaussian approximation. We have also tested larger lattice sizes, up to $L=512$. The Fourier-transformed transverse and longitudinal two-point correlation functions have Goldstone mode singularities in the thermodynamic limit at $k→0$ and $h=+0$, i.e., $G_⊥$(k)$≃ak^{−λ_⊥}$ and $G_{||}($k$)≃bk^{−λ_{||}}$, respectively. Here $a$ and $b$ are the amplitudes, $k$=|k| is the magnitude of the wave vector k. The exponents $λ_⊥$, $λ_{||}$ and the ratio $bM^2/a^2$, where $M$ is the spontaneous magnetization, are universal according to the GFD (grouping of Feynman diagrams) approach. Here we find that the universality follows also from the standard (Gaussian) theory, yielding $bM^2/a^2$=$(n−1)/16$. Our MC estimates of this ratio are $0.06±0.01$ for $n=2$, $0.17±0.01$ for $n=4$ and $0.498±0.010$ for $n=10$. According to these and our earlier MC results, the asymptotic behavior and Goldstone mode singularities are not exactly described by the standard theory. This is expected from the GFD theory. We have found appropriate analytic approximations for $G_⊥$(k) and $G_{||}$(k), well fitting the simulation data for small $k$. We have used them to test the Patashinski-Pokrovski relation and have found that it holds approximately.