- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 15 (2014), pp. 1320-1342.
Published online: 2014-05
Cited by
- BibTex
- RIS
- TXT
The carbuncle phenomenon has been regarded as a spurious solution produced by most of contact-preserving methods. The hybrid method of combining high resolution flux with more dissipative solver is an attractive attempt to cure this kind of non-physical phenomenon. In this paper, a matrix-based stability analysis for 2-D Euler equations is performed to explore the cause of instability of numerical schemes. By combining the Roe with HLL flux in different directions and different flux components, we give an interesting explanation to the linear numerical instability. Based on such analysis, some hybrid schemes are compared to illustrate different mechanisms in controlling shock instability. Numerical experiments are presented to verify our analysis results. The conclusion is that the scheme of restricting directly instability source is more stable than other hybrid schemes.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.210513.091013a}, url = {http://global-sci.org/intro/article_detail/cicp/7139.html} }The carbuncle phenomenon has been regarded as a spurious solution produced by most of contact-preserving methods. The hybrid method of combining high resolution flux with more dissipative solver is an attractive attempt to cure this kind of non-physical phenomenon. In this paper, a matrix-based stability analysis for 2-D Euler equations is performed to explore the cause of instability of numerical schemes. By combining the Roe with HLL flux in different directions and different flux components, we give an interesting explanation to the linear numerical instability. Based on such analysis, some hybrid schemes are compared to illustrate different mechanisms in controlling shock instability. Numerical experiments are presented to verify our analysis results. The conclusion is that the scheme of restricting directly instability source is more stable than other hybrid schemes.