- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 15 (2014), pp. 46-75.
Published online: 2014-01
Cited by
- BibTex
- RIS
- TXT
We present a new numerical method to approximate the solutions of an Euler-Poisson model, which is inherent to astrophysical flows where gravity plays an important role. We propose a discretization of gravity which ensures adequate coupling of the Poisson and Euler equations, paying particular attention to the gravity source term involved in the latter equations. In order to approximate this source term, its discretization is introduced into the approximate Riemann solver used for the Euler equations. A relaxation scheme is involved and its robustness is established. The method has been implemented in the software HERACLES [29] and several numerical experiments involving gravitational flows for astrophysics highlight the scheme.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.060712.210313a}, url = {http://global-sci.org/intro/article_detail/cicp/7087.html} }We present a new numerical method to approximate the solutions of an Euler-Poisson model, which is inherent to astrophysical flows where gravity plays an important role. We propose a discretization of gravity which ensures adequate coupling of the Poisson and Euler equations, paying particular attention to the gravity source term involved in the latter equations. In order to approximate this source term, its discretization is introduced into the approximate Riemann solver used for the Euler equations. A relaxation scheme is involved and its robustness is established. The method has been implemented in the software HERACLES [29] and several numerical experiments involving gravitational flows for astrophysics highlight the scheme.