- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 16 (2014), pp. 440-466.
Published online: 2014-08
Cited by
- BibTex
- RIS
- TXT
In this work, we are concerned with a time-splitting Fourier pseudospectral (TSFP) discretization for the Klein-Gordon (KG) equation, involving a dimensionless parameter ε∈(0,1]. In the nonrelativistic limit regime, the small ε produces high oscillations in exact solutions with wavelength of O(ε2) in time. The key idea behind the TSFP is to apply a time-splitting integrator to an equivalent first-order system in time, with both the nonlinear and linear subproblems exactly integrable in time and, respectively, Fourier frequency spaces. The method is fully explicit and time reversible. Moreover, we establish rigorously the optimal error bounds of a second-order TSFP for fixed ε = O(1), thanks to an observation that the scheme coincides with a type of trigonometric integrator. As the second task, numerical studies are carried out, with special efforts made to applying the TSFP in the nonrelativistic limit regime, which are geared towards understanding its temporal resolution capacity and meshing strategy for O(ε2)-oscillatory solutions when 0 < ε ≪ 1. It suggests that the method has uniform spectral accuracy in space, and an asymptotic O(ε−2∆t2) temporal discretization error bound (∆t refers to time step). On the other hand, the temporal error bounds for most trigonometric integrators, such as the well-established Gautschi-type integrator in [6], are O(ε−4∆t2). Thus, our method offers much better approximations than the Gautschi-type integrator in the highly oscillatory regime. These results, either rigorous or numerical, are valid for a splitting scheme applied to the classical relativistic NLS reformulation as well.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.280813.190214a}, url = {http://global-sci.org/intro/article_detail/cicp/7049.html} }In this work, we are concerned with a time-splitting Fourier pseudospectral (TSFP) discretization for the Klein-Gordon (KG) equation, involving a dimensionless parameter ε∈(0,1]. In the nonrelativistic limit regime, the small ε produces high oscillations in exact solutions with wavelength of O(ε2) in time. The key idea behind the TSFP is to apply a time-splitting integrator to an equivalent first-order system in time, with both the nonlinear and linear subproblems exactly integrable in time and, respectively, Fourier frequency spaces. The method is fully explicit and time reversible. Moreover, we establish rigorously the optimal error bounds of a second-order TSFP for fixed ε = O(1), thanks to an observation that the scheme coincides with a type of trigonometric integrator. As the second task, numerical studies are carried out, with special efforts made to applying the TSFP in the nonrelativistic limit regime, which are geared towards understanding its temporal resolution capacity and meshing strategy for O(ε2)-oscillatory solutions when 0 < ε ≪ 1. It suggests that the method has uniform spectral accuracy in space, and an asymptotic O(ε−2∆t2) temporal discretization error bound (∆t refers to time step). On the other hand, the temporal error bounds for most trigonometric integrators, such as the well-established Gautschi-type integrator in [6], are O(ε−4∆t2). Thus, our method offers much better approximations than the Gautschi-type integrator in the highly oscillatory regime. These results, either rigorous or numerical, are valid for a splitting scheme applied to the classical relativistic NLS reformulation as well.