- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 16 (2014), pp. 169-200.
Published online: 2014-07
Cited by
- BibTex
- RIS
- TXT
The construction of symplectic numerical schemes for stochastic Hamiltonian systems is studied. An approach based on generating functions method is proposed to generate the stochastic symplectic integration of any desired order. In general, the proposed symplectic schemes are fully implicit, and they become computationally expensive for mean square orders greater than two. However, for stochastic Hamiltonian systems preserving Hamiltonian functions, the high-order symplectic methods have simpler forms than the explicit Taylor expansion schemes. A theoretical analysis of the convergence and numerical simulations are reported for several symplectic integrators. The numerical case studies confirm that the symplectic methods are efficient computational tools for long-term simulations.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.311012.191113a}, url = {http://global-sci.org/intro/article_detail/cicp/7038.html} }The construction of symplectic numerical schemes for stochastic Hamiltonian systems is studied. An approach based on generating functions method is proposed to generate the stochastic symplectic integration of any desired order. In general, the proposed symplectic schemes are fully implicit, and they become computationally expensive for mean square orders greater than two. However, for stochastic Hamiltonian systems preserving Hamiltonian functions, the high-order symplectic methods have simpler forms than the explicit Taylor expansion schemes. A theoretical analysis of the convergence and numerical simulations are reported for several symplectic integrators. The numerical case studies confirm that the symplectic methods are efficient computational tools for long-term simulations.