- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 16 (2014), pp. 136-168.
Published online: 2014-07
Cited by
- BibTex
- RIS
- TXT
This paper aims to study the numerical features of a coupling scheme between the immersed boundary (IB) method and the lattice Boltzmann BGK (LBGK) model by four typical test problems: the relaxation of a circular membrane, the shearing flow induced by a moving fiber in the middle of a channel, the shearing flow near a non-slip rigid wall, and the circular Couette flow between two inversely rotating cylinders. The accuracy and robustness of the IB-LBGK coupling scheme, the performances of different discrete Dirac delta functions, the effect of iteration on the coupling scheme, the importance of the external forcing term treatment, the sensitivity of the coupling scheme to flow and boundary parameters, the velocity slip near non-slip rigid wall, and the origination of numerical instabilities are investigated in detail via the four test cases. It is found that the iteration in the coupling cycle can effectively improve stability, the introduction of a second-order forcing term in LBGK model is crucial, the discrete fiber segment length and the orientation of the fiber boundary obviously affect accuracy and stability, and the emergence of both temporal and spatial fluctuations of boundary parameters seems to be the indication of numerical instability. These elaborate results shed light on the nature of the coupling scheme and may benefit those who wish to use or improve the method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.260313.291113a}, url = {http://global-sci.org/intro/article_detail/cicp/7037.html} }This paper aims to study the numerical features of a coupling scheme between the immersed boundary (IB) method and the lattice Boltzmann BGK (LBGK) model by four typical test problems: the relaxation of a circular membrane, the shearing flow induced by a moving fiber in the middle of a channel, the shearing flow near a non-slip rigid wall, and the circular Couette flow between two inversely rotating cylinders. The accuracy and robustness of the IB-LBGK coupling scheme, the performances of different discrete Dirac delta functions, the effect of iteration on the coupling scheme, the importance of the external forcing term treatment, the sensitivity of the coupling scheme to flow and boundary parameters, the velocity slip near non-slip rigid wall, and the origination of numerical instabilities are investigated in detail via the four test cases. It is found that the iteration in the coupling cycle can effectively improve stability, the introduction of a second-order forcing term in LBGK model is crucial, the discrete fiber segment length and the orientation of the fiber boundary obviously affect accuracy and stability, and the emergence of both temporal and spatial fluctuations of boundary parameters seems to be the indication of numerical instability. These elaborate results shed light on the nature of the coupling scheme and may benefit those who wish to use or improve the method.