- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 36 (2024), pp. 781-820.
Published online: 2024-10
Cited by
- BibTex
- RIS
- TXT
Numerical study on compressible two-medium flows has been a hot issue in recent decades. In this study, we design quasi-conservative finite difference alternative weighted essentially non-oscillatory (AWENO) schemes up to the ninth order for the five-equation model with the stiffened gas equation of state. We propose uniformly high-order flux-based bound- and positivity-preserving (BP-P) limiters for the AWENO schemes while preserving the equilibrium solutions simultaneously. Though the BP-P limiters are used, the numerical solutions have the tendency to generate oscillations especially near strong shock and/or rarefaction waves, due to the sudden drastic scale transition of the density, pressure, etc. To resolve fine structures and the transition of different scales, the latest affine-invariant WENO (Ai-WENO) interpolation is adopted and generalized up to the ninth order. In addition, we will systematically derive CFL conditions when the Lax-Friedrichs numerical flux is applied. Moreover, we show the potential of the BP-P limiters for a variant of the five-equation model, usually suggested in finite volume and discontinuous Galerkin methods. For illustration purposes, we adopt the AWENO schemes and derive the corresponding CFL conditions. A variety of one- and two-dimensional test problems illustrate the high order of accuracy, effectiveness, and robustness of the proposed BP-P Ai-AWENO schemes.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0153}, url = {http://global-sci.org/intro/article_detail/cicp/23458.html} }Numerical study on compressible two-medium flows has been a hot issue in recent decades. In this study, we design quasi-conservative finite difference alternative weighted essentially non-oscillatory (AWENO) schemes up to the ninth order for the five-equation model with the stiffened gas equation of state. We propose uniformly high-order flux-based bound- and positivity-preserving (BP-P) limiters for the AWENO schemes while preserving the equilibrium solutions simultaneously. Though the BP-P limiters are used, the numerical solutions have the tendency to generate oscillations especially near strong shock and/or rarefaction waves, due to the sudden drastic scale transition of the density, pressure, etc. To resolve fine structures and the transition of different scales, the latest affine-invariant WENO (Ai-WENO) interpolation is adopted and generalized up to the ninth order. In addition, we will systematically derive CFL conditions when the Lax-Friedrichs numerical flux is applied. Moreover, we show the potential of the BP-P limiters for a variant of the five-equation model, usually suggested in finite volume and discontinuous Galerkin methods. For illustration purposes, we adopt the AWENO schemes and derive the corresponding CFL conditions. A variety of one- and two-dimensional test problems illustrate the high order of accuracy, effectiveness, and robustness of the proposed BP-P Ai-AWENO schemes.