- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 35 (2024), pp. 139-159.
Published online: 2024-01
Cited by
- BibTex
- RIS
- TXT
Images captured under insufficient light conditions often suffer from noticeable degradation of visibility, brightness and contrast. Existing methods pose limitations on enhancing low-visibility images, especially for diverse low-light conditions. In this paper, we first propose a new variational model for estimating the illumination map based on fractional-order differential. Once the illumination map is obtained, we directly inject the well-constructed illumination map into a general image restoration model, whose regularization terms can be viewed as an adaptive mapping. Since the regularization term in the restoration part can be arbitrary, one can model the regularization term by using different off-the-shelf denoisers and do not need to explicitly design various priors on the reflectance component. Because of flexibility of the model, the desired enhanced results can be solved efficiently by techniques like the plug-and-play inspired algorithm. Numerical experiments based on three public datasets demonstrate that our proposed method outperforms other competing methods, including deep learning approaches, under three commonly used metrics in terms of visual quality and image quality assessment.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0197}, url = {http://global-sci.org/intro/article_detail/cicp/22898.html} }Images captured under insufficient light conditions often suffer from noticeable degradation of visibility, brightness and contrast. Existing methods pose limitations on enhancing low-visibility images, especially for diverse low-light conditions. In this paper, we first propose a new variational model for estimating the illumination map based on fractional-order differential. Once the illumination map is obtained, we directly inject the well-constructed illumination map into a general image restoration model, whose regularization terms can be viewed as an adaptive mapping. Since the regularization term in the restoration part can be arbitrary, one can model the regularization term by using different off-the-shelf denoisers and do not need to explicitly design various priors on the reflectance component. Because of flexibility of the model, the desired enhanced results can be solved efficiently by techniques like the plug-and-play inspired algorithm. Numerical experiments based on three public datasets demonstrate that our proposed method outperforms other competing methods, including deep learning approaches, under three commonly used metrics in terms of visual quality and image quality assessment.