- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 35 (2024), pp. 70-106.
Published online: 2024-01
Cited by
- BibTex
- RIS
- TXT
In this work, we consider the Fokker-Planck equation of the Nonlinear Noisy Leaky Integrate-and-Fire (NNLIF) model for neuron networks. Due to the firing events of neurons at the microscopic level, this Fokker-Planck equation contains dynamic boundary conditions involving specific internal points. To efficiently solve this problem and explore the properties of the unknown, we construct a flexible numerical scheme for the Fokker-Planck equation in the framework of spectral methods that can accurately handle the dynamic boundary condition. This numerical scheme is stable with suitable choices of test function spaces, and asymptotic preserving, and it is easily extendable to variant models with multiple time scales. We also present extensive numerical examples to verify the scheme properties, including order of convergence and time efficiency, and explore unique properties of the model, including blow-up phenomena for the NNLIF model and learning and discriminative properties for the NNLIF model with learning rules.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0141}, url = {http://global-sci.org/intro/article_detail/cicp/22896.html} }In this work, we consider the Fokker-Planck equation of the Nonlinear Noisy Leaky Integrate-and-Fire (NNLIF) model for neuron networks. Due to the firing events of neurons at the microscopic level, this Fokker-Planck equation contains dynamic boundary conditions involving specific internal points. To efficiently solve this problem and explore the properties of the unknown, we construct a flexible numerical scheme for the Fokker-Planck equation in the framework of spectral methods that can accurately handle the dynamic boundary condition. This numerical scheme is stable with suitable choices of test function spaces, and asymptotic preserving, and it is easily extendable to variant models with multiple time scales. We also present extensive numerical examples to verify the scheme properties, including order of convergence and time efficiency, and explore unique properties of the model, including blow-up phenomena for the NNLIF model and learning and discriminative properties for the NNLIF model with learning rules.