- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 34 (2023), pp. 1247-1276.
Published online: 2023-12
Cited by
- BibTex
- RIS
- TXT
We extend the pure source transfer domain decomposition method (PSTDDM) to solve the perfectly matched layer approximation of Helmholtz scattering problems in heterogeneous media. We first propose some new source transfer operators, and then introduce the layer-wise and block-wise PSTDDMs based on these operators. In particular, it is proved that the solution obtained by the layer-wise PSTDDM in $\mathbb{R}^2$ coincides with the exact solution to the heterogeneous Helmholtz problem in the computational domain. Second, we propose the iterative layer-wise and block-wise PSTDDMs, which are designed by simply iterating the PSTDDM alternatively over two staggered decompositions of the computational domain. Finally, extensive numerical tests in two and three dimensions show that, as the preconditioner for the GMRES method, the iterative PSTDDMs are more robust and efficient than PSTDDMs for solving heterogeneous Helmholtz problems.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0032}, url = {http://global-sci.org/intro/article_detail/cicp/22213.html} }We extend the pure source transfer domain decomposition method (PSTDDM) to solve the perfectly matched layer approximation of Helmholtz scattering problems in heterogeneous media. We first propose some new source transfer operators, and then introduce the layer-wise and block-wise PSTDDMs based on these operators. In particular, it is proved that the solution obtained by the layer-wise PSTDDM in $\mathbb{R}^2$ coincides with the exact solution to the heterogeneous Helmholtz problem in the computational domain. Second, we propose the iterative layer-wise and block-wise PSTDDMs, which are designed by simply iterating the PSTDDM alternatively over two staggered decompositions of the computational domain. Finally, extensive numerical tests in two and three dimensions show that, as the preconditioner for the GMRES method, the iterative PSTDDMs are more robust and efficient than PSTDDMs for solving heterogeneous Helmholtz problems.