- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 34 (2023), pp. 530-562.
Published online: 2023-09
Cited by
- BibTex
- RIS
- TXT
In this paper, the electromagnetic scattering from overfilled cavities with inhomogeneous anisotropic media is investigated. To solve the scattering problem, a Petrov-Galerkin finite element interface method on non-body-fitted grids is presented. We reduce the infinite domain of scattering to a bounded domain problem by introducing a transparent boundary condition. The level set function is used to capture complex boundary and interface geometry that is not aligned with the mesh. Non-body-fitted grids allow us to save computational costs during mesh generation and significantly reduce the amount of computer memory required. The solution is built by connecting two linear polynomials across the interfaces to satisfy the jump conditions. The proposed method can handle matrix coefficients produced by permittivity and permeability tensors of anisotropic media. The final linear system is sparse, making it more suitable for most iterative methods. Numerical experiments show that the proposed method has good convergence and realizability. Meanwhile, we discover that the absorbing properties of anisotropic media clearly and positively influence the reduction of radar cross section. It has also been demonstrated that the method can achieve second-order accuracy.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0104}, url = {http://global-sci.org/intro/article_detail/cicp/21998.html} }In this paper, the electromagnetic scattering from overfilled cavities with inhomogeneous anisotropic media is investigated. To solve the scattering problem, a Petrov-Galerkin finite element interface method on non-body-fitted grids is presented. We reduce the infinite domain of scattering to a bounded domain problem by introducing a transparent boundary condition. The level set function is used to capture complex boundary and interface geometry that is not aligned with the mesh. Non-body-fitted grids allow us to save computational costs during mesh generation and significantly reduce the amount of computer memory required. The solution is built by connecting two linear polynomials across the interfaces to satisfy the jump conditions. The proposed method can handle matrix coefficients produced by permittivity and permeability tensors of anisotropic media. The final linear system is sparse, making it more suitable for most iterative methods. Numerical experiments show that the proposed method has good convergence and realizability. Meanwhile, we discover that the absorbing properties of anisotropic media clearly and positively influence the reduction of radar cross section. It has also been demonstrated that the method can achieve second-order accuracy.