- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 34 (2023), pp. 418-455.
Published online: 2023-09
Cited by
- BibTex
- RIS
- TXT
In this paper, we present a hybrid form of weighted compact nonlinear scheme (WCNS) for hyperbolic conservation laws by applying linear and nonlinear methods for smooth and discontinuous zones individually. To fulfill this algorithm, it is inseparable from the recognition ability of the discontinuity detector adopted. In specific, a troubled-cell indicator is utilized to recognize unsmooth areas such as shock waves and contact discontinuities, while avoiding misjudgments of smooth structures. Some classical detectors are classified into three basic types: derivative combination, smoothness indicators and characteristic decomposition. Meanwhile, a new improved detector is proposed for comparison. Then they are analyzed through identifying a series of waveforms firstly. After that, hybrid schemes using such indicators, as well as different detection variables, are examined with Euler equations, so as to investigate their ability to distinguish practical discontinuities on various levels. Simulation results demonstrate that the proposed algorithm has similar performances to pure WCNS, while it generally saves 50 percent of CPU time for 1D cases and about 40 percent for 2D Euler equations. Current research is in the hope of providing some reference and establishing some standards for judging existing discontinuity detectors and developing novel ones.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0080}, url = {http://global-sci.org/intro/article_detail/cicp/21974.html} }In this paper, we present a hybrid form of weighted compact nonlinear scheme (WCNS) for hyperbolic conservation laws by applying linear and nonlinear methods for smooth and discontinuous zones individually. To fulfill this algorithm, it is inseparable from the recognition ability of the discontinuity detector adopted. In specific, a troubled-cell indicator is utilized to recognize unsmooth areas such as shock waves and contact discontinuities, while avoiding misjudgments of smooth structures. Some classical detectors are classified into three basic types: derivative combination, smoothness indicators and characteristic decomposition. Meanwhile, a new improved detector is proposed for comparison. Then they are analyzed through identifying a series of waveforms firstly. After that, hybrid schemes using such indicators, as well as different detection variables, are examined with Euler equations, so as to investigate their ability to distinguish practical discontinuities on various levels. Simulation results demonstrate that the proposed algorithm has similar performances to pure WCNS, while it generally saves 50 percent of CPU time for 1D cases and about 40 percent for 2D Euler equations. Current research is in the hope of providing some reference and establishing some standards for judging existing discontinuity detectors and developing novel ones.