- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 33 (2023), pp. 399-424.
Published online: 2023-03
Cited by
- BibTex
- RIS
- TXT
We investigate the nonlinear dynamics of a moving interface in a Hele-Shaw cell subject to an in-plane applied electric field. We develop a spectrally accurate numerical method for solving a coupled integral equation system. Although the stiffness due to the high order spatial derivatives can be removed using a small scale decomposition technique, the long-time simulation is still expensive since the evolving velocity of the interface drops dramatically as the interface expands. We remove this physically imposed stiffness by employing a rescaling scheme, which accelerates the slow dynamics and reduces the computational cost. Our nonlinear results reveal that positive currents restrain finger ramification and promote the overall stabilization of patterns. On the other hand, negative currents make the interface more unstable and lead to the formation of thin tail structures connecting the fingers and a small inner region. When no fluid is injected, and a negative current is utilized, the interface tends to approach the origin and break up into several drops. We investigate the temporal evolution of the smallest distance between the interface and the origin and find that it obeys an algebraic law $(t_∗−t)^b,$ where $t_∗$ is the estimated pinch-off time.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0128}, url = {http://global-sci.org/intro/article_detail/cicp/21493.html} }We investigate the nonlinear dynamics of a moving interface in a Hele-Shaw cell subject to an in-plane applied electric field. We develop a spectrally accurate numerical method for solving a coupled integral equation system. Although the stiffness due to the high order spatial derivatives can be removed using a small scale decomposition technique, the long-time simulation is still expensive since the evolving velocity of the interface drops dramatically as the interface expands. We remove this physically imposed stiffness by employing a rescaling scheme, which accelerates the slow dynamics and reduces the computational cost. Our nonlinear results reveal that positive currents restrain finger ramification and promote the overall stabilization of patterns. On the other hand, negative currents make the interface more unstable and lead to the formation of thin tail structures connecting the fingers and a small inner region. When no fluid is injected, and a negative current is utilized, the interface tends to approach the origin and break up into several drops. We investigate the temporal evolution of the smallest distance between the interface and the origin and find that it obeys an algebraic law $(t_∗−t)^b,$ where $t_∗$ is the estimated pinch-off time.