- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 32 (2022), pp. 1310-1331.
Published online: 2023-01
Cited by
- BibTex
- RIS
- TXT
We propose an efficient numerical method for the simulation of the two-phase flows with moving contact lines in three dimensions. The mathematical model consists of the incompressible Navier-Stokes equations for the two immiscible fluids with the standard interface conditions, the Navier slip condition along the solid wall, and a contact angle condition (Ren et al. (2010) [28]). In the numerical method, the governing equations for the fluid dynamics are coupled with an advection equation for a level-set function. The latter models the dynamics of the fluid interface. Following the standard practice, the interface conditions are taken into account by introducing a singular force on the interface in the momentum equation. This results in a single set of governing equations in the whole fluid domain. Similarly, the contact angle condition is imposed by introducing a singular force, which acts in the normal direction of the contact line, into the Navier slip condition. The new boundary condition, which unifies the Navier slip condition and the contact angle condition, is imposed along the solid wall. The model is solved using the finite difference method. Numerical results are presented for the spreading of a droplet on both homogeneous and inhomogeneous solid walls, as well as the dynamics of a droplet on an inclined plate under gravity.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0021}, url = {http://global-sci.org/intro/article_detail/cicp/21365.html} }We propose an efficient numerical method for the simulation of the two-phase flows with moving contact lines in three dimensions. The mathematical model consists of the incompressible Navier-Stokes equations for the two immiscible fluids with the standard interface conditions, the Navier slip condition along the solid wall, and a contact angle condition (Ren et al. (2010) [28]). In the numerical method, the governing equations for the fluid dynamics are coupled with an advection equation for a level-set function. The latter models the dynamics of the fluid interface. Following the standard practice, the interface conditions are taken into account by introducing a singular force on the interface in the momentum equation. This results in a single set of governing equations in the whole fluid domain. Similarly, the contact angle condition is imposed by introducing a singular force, which acts in the normal direction of the contact line, into the Navier slip condition. The new boundary condition, which unifies the Navier slip condition and the contact angle condition, is imposed along the solid wall. The model is solved using the finite difference method. Numerical results are presented for the spreading of a droplet on both homogeneous and inhomogeneous solid walls, as well as the dynamics of a droplet on an inclined plate under gravity.