- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 32 (2022), pp. 829-849.
Published online: 2022-09
Cited by
- BibTex
- RIS
- TXT
We concentrate on the parallel, fully coupled and fully implicit solution of the sequence of 3-by-3 block-structured linear systems arising from the symmetry-preserving finite volume element discretization of the unsteady three-temperature radiation diffusion equations in high dimensions. In this article, motivated by [M. J. Gander, S. Loisel, D. B. Szyld, SIAM J. Matrix Anal. Appl. 33 (2012) 653–680] and [S. Nardean, M. Ferronato, A. S. Abushaikha, J. Comput. Phys. 442 (2021) 110513], we aim to develop the additive and multiplicative Schwarz preconditioners subdividing the physical quantities rather than the underlying domain, and consider their sequential and parallel implementations using a simplified explicit decoupling factor approximation and algebraic multigrid subsolves to address such linear systems. Robustness, computational efficiencies and parallel scalabilities of the proposed approaches are numerically tested in a number of representative real-world capsule implosion benchmarks.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0223}, url = {http://global-sci.org/intro/article_detail/cicp/21047.html} }We concentrate on the parallel, fully coupled and fully implicit solution of the sequence of 3-by-3 block-structured linear systems arising from the symmetry-preserving finite volume element discretization of the unsteady three-temperature radiation diffusion equations in high dimensions. In this article, motivated by [M. J. Gander, S. Loisel, D. B. Szyld, SIAM J. Matrix Anal. Appl. 33 (2012) 653–680] and [S. Nardean, M. Ferronato, A. S. Abushaikha, J. Comput. Phys. 442 (2021) 110513], we aim to develop the additive and multiplicative Schwarz preconditioners subdividing the physical quantities rather than the underlying domain, and consider their sequential and parallel implementations using a simplified explicit decoupling factor approximation and algebraic multigrid subsolves to address such linear systems. Robustness, computational efficiencies and parallel scalabilities of the proposed approaches are numerically tested in a number of representative real-world capsule implosion benchmarks.