- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 32 (2022), pp. 299-335.
Published online: 2022-08
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a machine learning approach via model-operator-data network (MOD-Net) for solving PDEs. A MOD-Net is driven by a model to solve PDEs based on operator representation with regularization from data. For linear PDEs, we use a DNN to parameterize the Green’s function and obtain the neural operator to approximate the solution according to the Green’s method. To train the DNN, the empirical risk consists of the mean squared loss with the least square formulation or the variational formulation of the governing equation and boundary conditions. For complicated problems, the empirical risk also includes a few labels, which are computed on coarse grid points with cheap computation cost and significantly improves the model accuracy. Intuitively, the labeled dataset works as a regularization in addition to the model constraints. The MOD-Net solves a family of PDEs rather than a specific one and is much more efficient than original neural operator because few expensive labels are required. We numerically show MOD-Net is very efficient in solving Poisson equation and one-dimensional radiative transfer equation. For nonlinear PDEs, the nonlinear MOD-Net can be similarly used as an ansatz for solving nonlinear PDEs, exemplified by solving several nonlinear PDE problems, such as the Burgers equation.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0257}, url = {http://global-sci.org/intro/article_detail/cicp/20860.html} }In this paper, we propose a machine learning approach via model-operator-data network (MOD-Net) for solving PDEs. A MOD-Net is driven by a model to solve PDEs based on operator representation with regularization from data. For linear PDEs, we use a DNN to parameterize the Green’s function and obtain the neural operator to approximate the solution according to the Green’s method. To train the DNN, the empirical risk consists of the mean squared loss with the least square formulation or the variational formulation of the governing equation and boundary conditions. For complicated problems, the empirical risk also includes a few labels, which are computed on coarse grid points with cheap computation cost and significantly improves the model accuracy. Intuitively, the labeled dataset works as a regularization in addition to the model constraints. The MOD-Net solves a family of PDEs rather than a specific one and is much more efficient than original neural operator because few expensive labels are required. We numerically show MOD-Net is very efficient in solving Poisson equation and one-dimensional radiative transfer equation. For nonlinear PDEs, the nonlinear MOD-Net can be similarly used as an ansatz for solving nonlinear PDEs, exemplified by solving several nonlinear PDE problems, such as the Burgers equation.