- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 32 (2022), pp. 41-82.
Published online: 2022-07
Cited by
- BibTex
- RIS
- TXT
We consider in this paper random batch interacting particle methods for solving the Poisson-Nernst-Planck (PNP) equations, and thus the Poisson-Boltzmann (PB) equation as the equilibrium, in the external unbounded domain. To justify the simulation in a truncated domain, an error estimate of the truncation is proved in the symmetric cases for the PB equation. Then, the random batch interacting particle methods are introduced which are $\mathcal{O}(N)$ per time step. The particle methods can not only be considered as a numerical method for solving the PNP and PB equations, but also can be used as a direct simulation approach for the dynamics of the charged particles in solution. The particle methods are preferable due to their simplicity and adaptivity to complicated geometry, and may be interesting in describing the dynamics of the physical process. Moreover, it is feasible to incorporate more physical effects and interactions in the particle methods and to describe phenomena beyond the scope of the mean-field equations.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0159}, url = {http://global-sci.org/intro/article_detail/cicp/20788.html} }We consider in this paper random batch interacting particle methods for solving the Poisson-Nernst-Planck (PNP) equations, and thus the Poisson-Boltzmann (PB) equation as the equilibrium, in the external unbounded domain. To justify the simulation in a truncated domain, an error estimate of the truncation is proved in the symmetric cases for the PB equation. Then, the random batch interacting particle methods are introduced which are $\mathcal{O}(N)$ per time step. The particle methods can not only be considered as a numerical method for solving the PNP and PB equations, but also can be used as a direct simulation approach for the dynamics of the charged particles in solution. The particle methods are preferable due to their simplicity and adaptivity to complicated geometry, and may be interesting in describing the dynamics of the physical process. Moreover, it is feasible to incorporate more physical effects and interactions in the particle methods and to describe phenomena beyond the scope of the mean-field equations.