arrow
Volume 31, Issue 4
A Consensus-Based Global Optimization Method with Adaptive Momentum Estimation

Jingrun Chen, Shi Jin & Liyao Lyu

Commun. Comput. Phys., 31 (2022), pp. 1296-1316.

Published online: 2022-03

Export citation
  • Abstract

Objective functions in large-scale machine-learning and artificial intelligence applications often live in high dimensions with strong non-convexity and massive local minima. Gradient-based methods, such as the stochastic gradient method and Adam [15], and gradient-free methods, such as the consensus-based optimization (CBO) method, can be employed to find minima. In this work, based on the CBO method and Adam, we propose a consensus-based global optimization method with adaptive momentum estimation (Adam-CBO). Advantages of the Adam-CBO method include:
• It is capable of finding global minima of non-convex objective functions with high success rates and low costs. This is verified by finding the global minimizer of the 1000 dimensional Rastrigin function with 100% success rate at a cost only growing linearly with respect to the dimensionality.
• It can handle non-differentiable activation functions and thus approximate low-regularity functions with better accuracy. This is confirmed by solving a machine learning task for partial differential equations with low-regularity solutions where the Adam-CBO method provides better results than Adam.
• It is robust in the sense that its convergence is insensitive to the learning rate by a linear stability analysis. This is confirmed by finding the minimizer of a quadratic function.

  • AMS Subject Headings

37N40, 90C26

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CiCP-31-1296, author = {Chen , JingrunJin , Shi and Lyu , Liyao}, title = {A Consensus-Based Global Optimization Method with Adaptive Momentum Estimation}, journal = {Communications in Computational Physics}, year = {2022}, volume = {31}, number = {4}, pages = {1296--1316}, abstract = {

Objective functions in large-scale machine-learning and artificial intelligence applications often live in high dimensions with strong non-convexity and massive local minima. Gradient-based methods, such as the stochastic gradient method and Adam [15], and gradient-free methods, such as the consensus-based optimization (CBO) method, can be employed to find minima. In this work, based on the CBO method and Adam, we propose a consensus-based global optimization method with adaptive momentum estimation (Adam-CBO). Advantages of the Adam-CBO method include:
• It is capable of finding global minima of non-convex objective functions with high success rates and low costs. This is verified by finding the global minimizer of the 1000 dimensional Rastrigin function with 100% success rate at a cost only growing linearly with respect to the dimensionality.
• It can handle non-differentiable activation functions and thus approximate low-regularity functions with better accuracy. This is confirmed by solving a machine learning task for partial differential equations with low-regularity solutions where the Adam-CBO method provides better results than Adam.
• It is robust in the sense that its convergence is insensitive to the learning rate by a linear stability analysis. This is confirmed by finding the minimizer of a quadratic function.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0144}, url = {http://global-sci.org/intro/article_detail/cicp/20385.html} }
TY - JOUR T1 - A Consensus-Based Global Optimization Method with Adaptive Momentum Estimation AU - Chen , Jingrun AU - Jin , Shi AU - Lyu , Liyao JO - Communications in Computational Physics VL - 4 SP - 1296 EP - 1316 PY - 2022 DA - 2022/03 SN - 31 DO - http://doi.org/10.4208/cicp.OA-2021-0144 UR - https://global-sci.org/intro/article_detail/cicp/20385.html KW - Consensus-based optimization, global optimization, machine learning, curse of dimensionality. AB -

Objective functions in large-scale machine-learning and artificial intelligence applications often live in high dimensions with strong non-convexity and massive local minima. Gradient-based methods, such as the stochastic gradient method and Adam [15], and gradient-free methods, such as the consensus-based optimization (CBO) method, can be employed to find minima. In this work, based on the CBO method and Adam, we propose a consensus-based global optimization method with adaptive momentum estimation (Adam-CBO). Advantages of the Adam-CBO method include:
• It is capable of finding global minima of non-convex objective functions with high success rates and low costs. This is verified by finding the global minimizer of the 1000 dimensional Rastrigin function with 100% success rate at a cost only growing linearly with respect to the dimensionality.
• It can handle non-differentiable activation functions and thus approximate low-regularity functions with better accuracy. This is confirmed by solving a machine learning task for partial differential equations with low-regularity solutions where the Adam-CBO method provides better results than Adam.
• It is robust in the sense that its convergence is insensitive to the learning rate by a linear stability analysis. This is confirmed by finding the minimizer of a quadratic function.

Jingrun Chen, Shi Jin & Liyao Lyu. (2022). A Consensus-Based Global Optimization Method with Adaptive Momentum Estimation. Communications in Computational Physics. 31 (4). 1296-1316. doi:10.4208/cicp.OA-2021-0144
Copy to clipboard
The citation has been copied to your clipboard