- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 869-892.
Published online: 2022-03
Cited by
- BibTex
- RIS
- TXT
In this paper, a hybrid approach which combines linear sampling method and the Bayesian method is proposed to simultaneously reconstruct multiple obstacles. The number of obstacles and the approximate geometric information are first qualitatively obtained by the linear sampling method. Based on the reconstructions of the linear sampling method, the Bayesian method is employed to obtain more refined details of the obstacles. The well-posedness of the posterior distribution is proved by using the Hellinger metric. The Markov Chain Monte Carlo algorithm is proposed to explore the posterior density with the initial guesses provided by the linear sampling method. Numerical experiments are provided to testify the effectiveness and efficiency of the proposed method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0124}, url = {http://global-sci.org/intro/article_detail/cicp/20301.html} }In this paper, a hybrid approach which combines linear sampling method and the Bayesian method is proposed to simultaneously reconstruct multiple obstacles. The number of obstacles and the approximate geometric information are first qualitatively obtained by the linear sampling method. Based on the reconstructions of the linear sampling method, the Bayesian method is employed to obtain more refined details of the obstacles. The well-posedness of the posterior distribution is proved by using the Hellinger metric. The Markov Chain Monte Carlo algorithm is proposed to explore the posterior density with the initial guesses provided by the linear sampling method. Numerical experiments are provided to testify the effectiveness and efficiency of the proposed method.