- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 188-223.
Published online: 2021-12
Cited by
- BibTex
- RIS
- TXT
Prediction and control of chemical mixing are vital for many scientific areas such as subsurface reactive transport, climate modeling, combustion, epidemiology, and pharmacology. Due to the complex nature of mixing in heterogeneous and anisotropic media, the mathematical models related to this phenomenon are not analytically tractable. Numerical simulations often provide a viable route to predict chemical mixing accurately. However, contemporary modeling approaches for mixing cannot utilize available spatial-temporal data to improve the accuracy of the future prediction and can be compute-intensive, especially when the spatial domain is large and for long-term temporal predictions. To address this knowledge gap, we will present in this paper a deep learning (DL) modeling framework applied to predict the progress of chemical mixing under fast bimolecular reactions. This framework uses convolutional neural networks (CNN) for capturing spatial patterns and long short-term memory (LSTM) networks for forecasting temporal variations in mixing. By careful design of the framework—placement of non-negative constraint on the weights of the CNN and the selection of activation function, the framework ensures non-negativity of the chemical species at all spatial points and for all times. Our DL-based framework is fast, accurate, and requires minimal data for training. The time needed to obtain a forecast using the model is a fraction ($≈ \mathcal{O}(10^{−6}))$ of the time needed to obtain the result using a high-fidelity simulation. To achieve an error of 10% (measured using the infinity norm) for capturing local-scale mixing features such as interfacial mixing, only 24% to 32% of the sequence data for model training is required. To achieve the same level of accuracy for capturing global-scale mixing features, the sequence data required for model training is 64% to 70% of the total spatial-temporal data. Hence, the proposed approach—a fast and accurate way to forecast long-time spatial-temporal mixing patterns in heterogeneous and anisotropic media—will be a valuable tool for modeling reactive-transport in a wide range of applications.
}, issn = {1991-7120}, doi = {https://doi.org/ 10.4208/cicp.OA-2021-0088}, url = {http://global-sci.org/intro/article_detail/cicp/20022.html} }Prediction and control of chemical mixing are vital for many scientific areas such as subsurface reactive transport, climate modeling, combustion, epidemiology, and pharmacology. Due to the complex nature of mixing in heterogeneous and anisotropic media, the mathematical models related to this phenomenon are not analytically tractable. Numerical simulations often provide a viable route to predict chemical mixing accurately. However, contemporary modeling approaches for mixing cannot utilize available spatial-temporal data to improve the accuracy of the future prediction and can be compute-intensive, especially when the spatial domain is large and for long-term temporal predictions. To address this knowledge gap, we will present in this paper a deep learning (DL) modeling framework applied to predict the progress of chemical mixing under fast bimolecular reactions. This framework uses convolutional neural networks (CNN) for capturing spatial patterns and long short-term memory (LSTM) networks for forecasting temporal variations in mixing. By careful design of the framework—placement of non-negative constraint on the weights of the CNN and the selection of activation function, the framework ensures non-negativity of the chemical species at all spatial points and for all times. Our DL-based framework is fast, accurate, and requires minimal data for training. The time needed to obtain a forecast using the model is a fraction ($≈ \mathcal{O}(10^{−6}))$ of the time needed to obtain the result using a high-fidelity simulation. To achieve an error of 10% (measured using the infinity norm) for capturing local-scale mixing features such as interfacial mixing, only 24% to 32% of the sequence data for model training is required. To achieve the same level of accuracy for capturing global-scale mixing features, the sequence data required for model training is 64% to 70% of the total spatial-temporal data. Hence, the proposed approach—a fast and accurate way to forecast long-time spatial-temporal mixing patterns in heterogeneous and anisotropic media—will be a valuable tool for modeling reactive-transport in a wide range of applications.