- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 94-130.
Published online: 2021-12
Cited by
- BibTex
- RIS
- TXT
A high-order, well-balanced, positivity-preserving quasi-Lagrange moving mesh DG method is presented for the shallow water equations with non-flat bottom topography. The well-balance property is crucial to the ability of a scheme to simulate perturbation waves over the lake-at-rest steady state such as waves on a lake or tsunami waves in the deep ocean. The method combines a quasi-Lagrange moving mesh DG method, a hydrostatic reconstruction technique, and a change of unknown variables. The strategies in the use of slope limiting, positivity-preservation limiting, and change of variables to ensure the well-balance and positivity-preserving properties are discussed. Compared to rezoning-type methods, the current method treats mesh movement continuously in time and has the advantages that it does not need to interpolate flow variables from the old mesh to the new one and places no constraint for the choice of a update scheme for the bottom topography on the new mesh. A selection of one- and two-dimensional examples are presented to demonstrate the well-balance property, positivity preservation, and high-order accuracy of the method and its ability to adapt the mesh according to features in the flow and bottom topography.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0127}, url = {http://global-sci.org/intro/article_detail/cicp/20019.html} }A high-order, well-balanced, positivity-preserving quasi-Lagrange moving mesh DG method is presented for the shallow water equations with non-flat bottom topography. The well-balance property is crucial to the ability of a scheme to simulate perturbation waves over the lake-at-rest steady state such as waves on a lake or tsunami waves in the deep ocean. The method combines a quasi-Lagrange moving mesh DG method, a hydrostatic reconstruction technique, and a change of unknown variables. The strategies in the use of slope limiting, positivity-preservation limiting, and change of variables to ensure the well-balance and positivity-preserving properties are discussed. Compared to rezoning-type methods, the current method treats mesh movement continuously in time and has the advantages that it does not need to interpolate flow variables from the old mesh to the new one and places no constraint for the choice of a update scheme for the bottom topography on the new mesh. A selection of one- and two-dimensional examples are presented to demonstrate the well-balance property, positivity preservation, and high-order accuracy of the method and its ability to adapt the mesh according to features in the flow and bottom topography.