- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 30 (2021), pp. 1474-1498.
Published online: 2021-10
Cited by
- BibTex
- RIS
- TXT
This work considers numerical methods for the time-dependent Schrödinger equation of incommensurate systems. By using a plane wave method for spatial discretization, the incommensurate problem is lifted to a higher dimension that results in semidiscrete differential equations with extremely demanding computational cost. We propose several fully discrete time stepping schemes based on the idea of "layer-splitting", which decompose the semidiscrete problem into sub-problems that each corresponds to one of the periodic layers. Then these schemes handle only some periodic systems in the original lower dimension at each time step, which reduces the computational cost significantly and is natural to involve stochastic methods and parallel computing. Both theoretical analysis and numerical experiments are provided to support the reliability and efficiency of the algorithms.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0070}, url = {http://global-sci.org/intro/article_detail/cicp/19937.html} }This work considers numerical methods for the time-dependent Schrödinger equation of incommensurate systems. By using a plane wave method for spatial discretization, the incommensurate problem is lifted to a higher dimension that results in semidiscrete differential equations with extremely demanding computational cost. We propose several fully discrete time stepping schemes based on the idea of "layer-splitting", which decompose the semidiscrete problem into sub-problems that each corresponds to one of the periodic layers. Then these schemes handle only some periodic systems in the original lower dimension at each time step, which reduces the computational cost significantly and is natural to involve stochastic methods and parallel computing. Both theoretical analysis and numerical experiments are provided to support the reliability and efficiency of the algorithms.