- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 30 (2021), pp. 1453-1473.
Published online: 2021-10
Cited by
- BibTex
- RIS
- TXT
Robust control design for quantum systems with uncertainty is a key task for developing practical quantum technology. In this paper, we apply neural networks to learn the control of a quantum system with uncertainty. By exploiting the auto differentiation function developed for neural network models, our method avoids the manual computation of the gradient of the cost function as required in traditional methods. We implement our method using two algorithms. One uses neural networks to learn both the states and the controls and one uses neural networks to learn only the controls but solve the states by finite difference methods. Both algorithms incorporate the sampling-based learning process into the training of the networks. The performance of the algorithms is evaluated on a practical numerical example, followed by a detailed discussion about the advantage and trade-offs between our method and the other numerical schemes.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0182}, url = {http://global-sci.org/intro/article_detail/cicp/19936.html} }Robust control design for quantum systems with uncertainty is a key task for developing practical quantum technology. In this paper, we apply neural networks to learn the control of a quantum system with uncertainty. By exploiting the auto differentiation function developed for neural network models, our method avoids the manual computation of the gradient of the cost function as required in traditional methods. We implement our method using two algorithms. One uses neural networks to learn both the states and the controls and one uses neural networks to learn only the controls but solve the states by finite difference methods. Both algorithms incorporate the sampling-based learning process into the training of the networks. The performance of the algorithms is evaluated on a practical numerical example, followed by a detailed discussion about the advantage and trade-offs between our method and the other numerical schemes.