- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 30 (2021), pp. 749-770.
Published online: 2021-07
Cited by
- BibTex
- RIS
- TXT
In calculating the time evolution of an atomic system on diffusive timescales, off-lattice kinetic Monte Carlo (OLKMC) can sometimes be used to overcome the limitations of Molecular Dynamics. OLKMC relies on the harmonic approximation to Transition State Theory, in which the rate of rare transitions from one energy minimum to a neighboring minimum scales exponentially with an energy barrier on the potential energy surface. This requires locating the index-1 saddle point, commonly referred to as a transition state, that separates two neighboring energy minima. In modeling the evolution of an atomic system, it is desirable to find all the relevant transitions surrounding the current minimum. Due to the large number of minima on the potential energy surface, exhaustively searching the landscape for these saddle points is a challenging task. In examining the particular case of isolated Lennard-Jones clusters of around 50 particles, we observe very slow convergence of the total number of saddle points found as a function of successful searches. We seek to understand this behavior by modeling the distribution of successful searches and sampling this distribution to create a stochastic process that mimics this behavior. Finally, we will discuss an improvement to a rejection scheme for OLKMC where we terminate searches that appear to be failing early in the search process.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0211}, url = {http://global-sci.org/intro/article_detail/cicp/19309.html} }In calculating the time evolution of an atomic system on diffusive timescales, off-lattice kinetic Monte Carlo (OLKMC) can sometimes be used to overcome the limitations of Molecular Dynamics. OLKMC relies on the harmonic approximation to Transition State Theory, in which the rate of rare transitions from one energy minimum to a neighboring minimum scales exponentially with an energy barrier on the potential energy surface. This requires locating the index-1 saddle point, commonly referred to as a transition state, that separates two neighboring energy minima. In modeling the evolution of an atomic system, it is desirable to find all the relevant transitions surrounding the current minimum. Due to the large number of minima on the potential energy surface, exhaustively searching the landscape for these saddle points is a challenging task. In examining the particular case of isolated Lennard-Jones clusters of around 50 particles, we observe very slow convergence of the total number of saddle points found as a function of successful searches. We seek to understand this behavior by modeling the distribution of successful searches and sampling this distribution to create a stochastic process that mimics this behavior. Finally, we will discuss an improvement to a rejection scheme for OLKMC where we terminate searches that appear to be failing early in the search process.