- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 1583-1622.
Published online: 2021-03
Cited by
- BibTex
- RIS
- TXT
In many areas of science and engineering, it is a common task to infer physical fields from sparse observations. This paper presents the DAFI code intended as a flexible framework for two broad classes of such inverse problems: data assimilation and field inversion. DAFI generalizes these diverse problems into a general formulation and solves it with ensemble Kalman filters, a family of ensemble-based, derivative-free, Bayesian methods. This Bayesian approach has the added advantage of providing built-in uncertainty quantification. Moreover, the code provides tools for performing common tasks related to random fields, as well as I/O utilities for integration with the open-source finite volume tool OpenFOAM. The code capabilities are showcased through several test cases including state and parameter estimation for the Lorenz dynamic system, field inversion for the diffusion equations, and uncertainty quantification. The object-oriented nature of the code allows for easily interchanging different solution methods and different physics problems. It provides a simple interface for the users to supply their domain-specific physics models. Finally, the code can be used as a test-bed for new ensemble-based data assimilation and field inversion methods.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0178}, url = {http://global-sci.org/intro/article_detail/cicp/18732.html} }In many areas of science and engineering, it is a common task to infer physical fields from sparse observations. This paper presents the DAFI code intended as a flexible framework for two broad classes of such inverse problems: data assimilation and field inversion. DAFI generalizes these diverse problems into a general formulation and solves it with ensemble Kalman filters, a family of ensemble-based, derivative-free, Bayesian methods. This Bayesian approach has the added advantage of providing built-in uncertainty quantification. Moreover, the code provides tools for performing common tasks related to random fields, as well as I/O utilities for integration with the open-source finite volume tool OpenFOAM. The code capabilities are showcased through several test cases including state and parameter estimation for the Lorenz dynamic system, field inversion for the diffusion equations, and uncertainty quantification. The object-oriented nature of the code allows for easily interchanging different solution methods and different physics problems. It provides a simple interface for the users to supply their domain-specific physics models. Finally, the code can be used as a test-bed for new ensemble-based data assimilation and field inversion methods.