- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 747-766.
Published online: 2021-01
Cited by
- BibTex
- RIS
- TXT
In this paper we propose a new nonlinear cell-centered finite volume scheme on general polygonal meshes for two dimensional anisotropic diffusion problems, which preserves discrete maximum principle (DMP). The scheme is based on the so-called diamond scheme with a nonlinear treatment on its tangential flux to obtain a local maximum principle (LMP) structure. It is well-known that existing DMP preserving diffusion schemes suffer from the fact that auxiliary unknowns should be presented as a convex combination of primary unknowns. In this paper, to get rid of this constraint a nonlinearization strategy is introduced and it requires only a second-order accurate approximation for auxiliary unknowns. Numerical results show that this scheme has second-order accuracy, preserves maximum and minimum for solutions and is conservative.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0047}, url = {http://global-sci.org/intro/article_detail/cicp/18565.html} }In this paper we propose a new nonlinear cell-centered finite volume scheme on general polygonal meshes for two dimensional anisotropic diffusion problems, which preserves discrete maximum principle (DMP). The scheme is based on the so-called diamond scheme with a nonlinear treatment on its tangential flux to obtain a local maximum principle (LMP) structure. It is well-known that existing DMP preserving diffusion schemes suffer from the fact that auxiliary unknowns should be presented as a convex combination of primary unknowns. In this paper, to get rid of this constraint a nonlinearization strategy is introduced and it requires only a second-order accurate approximation for auxiliary unknowns. Numerical results show that this scheme has second-order accuracy, preserves maximum and minimum for solutions and is conservative.