- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 2180-2205.
Published online: 2020-11
Cited by
- BibTex
- RIS
- TXT
In Bayesian inverse problems, surrogate models are often constructed to speed up the computational procedure, as the parameter-to-data map can be very expensive to evaluate. However, due to the curse of dimensionality and the nonlinear concentration of the posterior, traditional surrogate approaches (such us the polynomial-based surrogates) are still not feasible for large scale problems. To this end, we present in this work an adaptive multi-fidelity surrogate modeling framework based on deep neural networks (DNNs), motivated by the facts that the DNNs can potentially handle functions with limited regularity and are powerful tools for high dimensional approximations. More precisely, we first construct offline a DNN-based surrogate according to the prior distribution, and then, this prior-based DNN-surrogate will be adaptively & locally refined online using only a few high-fidelity simulations. In particular, in the refine procedure, we construct a new shallow neural network that views the previous constructed surrogate as an input variable – yielding a composite multi-fidelity neural network approach. This makes the online computational procedure rather efficient. Numerical examples are presented to confirm that the proposed approach can obtain accurate posterior information with a limited number of forward simulations.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0186}, url = {http://global-sci.org/intro/article_detail/cicp/18409.html} }In Bayesian inverse problems, surrogate models are often constructed to speed up the computational procedure, as the parameter-to-data map can be very expensive to evaluate. However, due to the curse of dimensionality and the nonlinear concentration of the posterior, traditional surrogate approaches (such us the polynomial-based surrogates) are still not feasible for large scale problems. To this end, we present in this work an adaptive multi-fidelity surrogate modeling framework based on deep neural networks (DNNs), motivated by the facts that the DNNs can potentially handle functions with limited regularity and are powerful tools for high dimensional approximations. More precisely, we first construct offline a DNN-based surrogate according to the prior distribution, and then, this prior-based DNN-surrogate will be adaptively & locally refined online using only a few high-fidelity simulations. In particular, in the refine procedure, we construct a new shallow neural network that views the previous constructed surrogate as an input variable – yielding a composite multi-fidelity neural network approach. This makes the online computational procedure rather efficient. Numerical examples are presented to confirm that the proposed approach can obtain accurate posterior information with a limited number of forward simulations.