- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 2075-2108.
Published online: 2020-11
Cited by
- BibTex
- RIS
- TXT
We propose a universal discontinuity detector using convolution neural network (CNN) and apply it in conjunction of solving nonlinear conservation laws in both 1D and 2D. The CNN detector is trained offline with synthetic data. The training data are generated using randomly constructed piecewise functions, which are then processed using randomized linear advection solver to count for the cases of numerical errors in practice. The detector is then paired with high-order numerical solvers. In particular, we combined high-order WENO in troubled cells with high-order central difference in smooth region. Extensive numerical examples are presented. We observe that the proposed method produces notably sharper and cleaner signals near the discontinuities, when compared to other well known troubled cell detector methods.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0199}, url = {http://global-sci.org/intro/article_detail/cicp/18405.html} }We propose a universal discontinuity detector using convolution neural network (CNN) and apply it in conjunction of solving nonlinear conservation laws in both 1D and 2D. The CNN detector is trained offline with synthetic data. The training data are generated using randomly constructed piecewise functions, which are then processed using randomized linear advection solver to count for the cases of numerical errors in practice. The detector is then paired with high-order numerical solvers. In particular, we combined high-order WENO in troubled cells with high-order central difference in smooth region. Extensive numerical examples are presented. We observe that the proposed method produces notably sharper and cleaner signals near the discontinuities, when compared to other well known troubled cell detector methods.