- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 1585-1608.
Published online: 2020-08
Cited by
- BibTex
- RIS
- TXT
We study an identification problem which estimates the parameters of the underlying random distribution for uncertain scalar conservation laws. The hyperbolic equations are discretized with the so-called discontinuous stochastic Galerkin method, i.e., using a spatial discontinuous Galerkin scheme and a Multielement stochastic Galerkin ansatz in the random space. We assume an uncertain flux or uncertain initial conditions and that a data set of an observed solution is given. The uncertainty is assumed to be uniformly distributed on an unknown interval and we focus on identifying the correct endpoints of this interval. The first-order optimality conditions from the discontinuous stochastic Galerkin discretization are computed on the time-continuous level. Then, we solve the resulting semi-discrete forward and backward schemes with the Runge-Kutta method. To illustrate the feasibility of the approach, we apply the method to a stochastic advection and a stochastic equation of Burgers' type. The results show that the method is able to identify the distribution parameters of the random variable in the uncertain differential equation even if discontinuities are present.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0221}, url = {http://global-sci.org/intro/article_detail/cicp/18112.html} }We study an identification problem which estimates the parameters of the underlying random distribution for uncertain scalar conservation laws. The hyperbolic equations are discretized with the so-called discontinuous stochastic Galerkin method, i.e., using a spatial discontinuous Galerkin scheme and a Multielement stochastic Galerkin ansatz in the random space. We assume an uncertain flux or uncertain initial conditions and that a data set of an observed solution is given. The uncertainty is assumed to be uniformly distributed on an unknown interval and we focus on identifying the correct endpoints of this interval. The first-order optimality conditions from the discontinuous stochastic Galerkin discretization are computed on the time-continuous level. Then, we solve the resulting semi-discrete forward and backward schemes with the Runge-Kutta method. To illustrate the feasibility of the approach, we apply the method to a stochastic advection and a stochastic equation of Burgers' type. The results show that the method is able to identify the distribution parameters of the random variable in the uncertain differential equation even if discontinuities are present.